STA303: Artificial Intelligence

Final Review

Fang Kong
https://fangkongx.github.io/Teaching/STA303/Fall2025/index.html

https://fangkongx.github.io/Teaching/STA303/Fall2025/index.html

This course: Desighing rational agents

= An agent is an entity that perceives and acts.

= A rational agent selects actions that maximize
its (expected) utility.
= Characteristics of the percepts, environment,

and action space dictate techniques for
selecting rational actions

= This course is about:
= General Al techniques for a variety of problem
types

" |Learning to recognize when and how a new
problem can be solved with an existing technique

Sensors

Actuators

|

Percepts

JULSWuUoJIAUg

Actions

:

Course Topics

Core Components of Rational Agents:

Search & Probability &
Planning Inference
Supervised Reinforcement

Learning Learning

STA303: Artificial Intelligence

Search

Fang Kong
https://fangkongx.github.io/Teaching/STA303/Fall2025/index.html

Slide credits: ai.berkeley.edu

https://fangkongx.github.io/Teaching/STA303/Fall2025/index.html

Search Problems

= A search problem consists of:

g | 1111

= A successor function “N% 1.0 u

\ !
llE”’ 1-0

= A start state and a goal test

= A solution is a sequence of actions (a plan) which
transforms the start state to a goal state

What's in a State Space?

The world state includes every last detail of the environment

SCORE:

A search state keeps only the details needed for planning (abstraction)

" Problem: Pathing

States: (x,y) location
Actions: NSEW

Successor: update location
only

Goal test: is (x,y)=END

= Problem: Eat-All-Dots

States: {(x,y), dot booleans}
Actions: NSEW

Successor: update location
and possibly a dot boolean

Goal test: dots all false

State Space Sizes?

= World state:
= Agent positions: 120
=" Food count: 30
= Ghost positions: 12
= Agent facing: NSEW

= How many
= World states?
120x(23%)x(122)x4
= States for pathing?
120

= States for eat-all-dots?
120x(23°)

State Space Graphs

= State space graph: A mathematical
representation of a search problem

= Nodes are (abstracted) world configurations
= Arcs represent successors (action results)
» The goal test is a set of goal nodes (maybe only one)

" |n a state space graph, each state occurs only
once!

= We can rarely build this full graph in memory
(it’s too big), but it’s a useful idea

Search Trees

! _ This is now / start
N 10— E 10
u ! _ Possible futures
T T

= Asearch tree:
= A “what if” tree of plans and their outcomes
» The start state is the root node
= Children correspond to successors
= Nodes show states, but correspond to PLANS that achieve those states
= For most problems, we can never actually build the whole tree

State Space Graphs vs. Search Trees

/State Space Graph\

Each NODE in the
search tree is an
entire PATH in the

state space graph.

We construct both
on demand — and
we construct as
little as possible.

-

Search Tree

S
e
e
e e —
b e h r
I — Fa Y
a h r p q f
Y ' S
p q f q c G
] /\
qg ¢ G a

Tree Search

General Tree Search

function TREE-SEARCH(problem, strategy) returns a solution, or failure
initialize the search tree using the initial state of problem
loop do
if there are no candidates for expansion then return failure
choose a leaf node for expansion according to strategy
if the node contains a goal state then return the corresponding solution
else expand the node and add the resulting nodes to the search tree
end

" |[mportant ideas:
= Fringe
= Expansion
= Exploration strategy

"= Main question: which fringe nodes to explore?

Search Algorithm Properties

Complete: Guaranteed to find a solution if one exists?
Optimal: Guaranteed to find the least cost path?

Time complexity?

: 4 1 node
Space complexity?
b nodes
2

Cartoon of search tree: | b* nodes

= bisthe branching factor m tiers <

= misthe maximum depth

= solutions at various depths

\ b™ nodes

Number of nodes in entire tree?
= 1+b+b?2+...b"=0(bM)

Depth-First Search

Depth-First Search

Strategy: expand a
deepest node first

Implementation:
Fringe is a LIFO stack

Depth-First Search (DFS) Properties

= What nodes DFS expand?

= Some left prefix of the tree. 1 node
= Could process the whole tree! b nodes
= |f mis finite, takes time O(b™) b2 nodes
_ m tiers <
= How much space does the fringe take?
= Only has siblings on path to root, so O(bm)
" |sit complete? b™ nodes

= m could be infinite, so only if we prevent
that

" |sit optimal?

= No, it finds the “leftmost” solution,
regardless of depth or cost

Breadth-First Search

Strategy: expand a
shallowest node first

Implementation: Fringe
is a FIFO queue

Breadth-First Search

Search

Tiers

Breadth-First Search (BFS) Properties

= What nodes does BFS expand?

~

= Processes all nodes above shallowest solution b 1 node

" Let depth of shallowest solution be s . b nodes

, s tiers <

= Search takes time O(b®) / b2 nodes
* How much space does the fringe take? - / o \ bs nodes

= Has roughly the last tier, so O(b®)

@

" |sit complete? o b™m nodes

= s must be finite if a solution exists, so yes!

" |sit optimal?
= Only if costs are all 1 (more on costs later)

Iterative Deepening

" |dea: get DFS’s space advantage with BFS’s time
/ shallow-solution advantages
= Run a DFS with depth limit 1. If no solution...
= Run a DFS with depth limit 2. If no solution...
= Run a DFS with depth limit 3.

" [sn’t that wastefully redundant?

= Generally most work happens in the lowest level
searched, so not so bad!

Cost-Sensitive Search

(s (y—s T

BFS finds the shortest path in terms of number of actions.
It does not find the least-cost path. We will now cover
a similar algorithm which does find the least-cost path.

Uniform Cost Search

Strategy: expand a
cheapest node first:

Fringe is a priority queue
(priority: cumulative cost)

Uniform Cost Search

Cost
contours

Uniform Cost Search (UCS) Properties

= What nodes does UCS expand?

= Processes all nodes with cost less than cheapest solution!

= |f that solution costs C* and arcs cost at least &, then the
“effective depth” is roughly C*/¢

C*/e “tiers” <
= Takes time O(b€"%) (exponential in effective depth)

= How much space does the fringe take?
= Has roughly the last tier, so O(b¢ %)

M)
O/

" |sit complete?

= Assuming best solution has a finite cost and minimum arc cost
is positive, yes!

" |sit optimal?

= Yes! (Proof next lecture via A*)

Uniform Cost Issues

= Remember: UCS explores increasing cost
contours

" The good: UCS is complete and optimall!

" The bad:
= Explores options in every “direction”
®= No information about goal location
Goal
= We'll fix that soon! [Demo: empty grid UCS (L2D5)]

[Demo: maze with deep/shallow
water DFS/BFS/UCS (L2D7)]

The One Queue

= All these search algorithms are the
same except for fringe strategies

= Conceptually, all fringes are priority
gueues (i.e. collections of nodes with
attached priorities)

= Practically, for DFS and BFS, you can
avoid using an actual priority queue, by
using stacks and queues

= Can even code one implementation
that takes a variable queuing object

FEEFFELT

Informed Search

Search Heuristics

" A heuristic is:
= A function that estimates how close a state is to a goal //\\\
= Designed for a particular search problem NOPE N con
= Examples: Manhattan distance, Euclidean distance for

pathing

>
Heuristi - Tron J
A:P :/1\602\

‘;é-aA '
<>

Heuristi — Tron J

Greedy Search

Greedy Search

Sibiu gg Fagaras

Rimnicu Vilcea

Timisoara

= Expand the node that seems closest...

[} Mehadia

75
Arad

Dobreta []

Eforie

329 374

380 193

366

CSibiu Db Guchared

253 0

= What can go wrong?

Greedy Search

= Strategy: expand a node that you think is
closest to a goal state

= Heuristic: estimate of distance to nearest goal for
each state

= A common case:
= Best-first takes you straight to the (wrong) goal

= Worst-case: like a badly-guided DFS

[Demo: contours greedy empty (L3D1)]
[Demo: contours greedy pacman small maze (L3D4)]

A* Search

Combining UCS and Greedy

= Uniform-cost orders by path cost, or backward cost g(n)
= Greedy orders by goal proximity, or forward cost h(n)

h=2 h=0

= A* Search orders by the sum: f(n) = g(n) + h(n)

Example: Teg Grenager

When should A* terminate?

= Should we stop when we enqueue a goal?

h=2

o e
2 e 3 f=4+0
(&)

h=1

= No: only stop when we dequeue a goal

B f=0+3
H f=2+1
E f=5+0

Is A* Optimal?

= What went wrong?
= Actual bad goal cost < estimated good goal cost
= \We need estimates to be less than actual costs!

ldea: Admissibility

Heurist - Tron @

Inadmissible (pessimistic) heuristics break Admissible (optimistic) heuristics slow down
optimality by trapping good plans on the fringe bad plans but never outweigh true costs

Admissible Heuristics
= A heuristic /1 is admissible (optimistic) if:
0 < h(n) < h*(n)

where h*(n) isthe true cost to a nearest goal

o -

= Coming up with admissible heuristics is most of what’s involved
in using A* in practice.

Optimality of A* Tree Search

Optimality of A* Tree Search

Assume:
= Aisan optimal goal node

= Bisasuboptimal goal node
= hisadmissible

Claim:

= A will exit the fringe before B

Optimality of A* Tree Search: Blocking

Proof:
" |magine B is on the fringe

= Some ancestor n of A is on the
fringe, too (maybe Al)

= Claim: n will be expanded before B
1. f(n) is less or equal to f(A)

Optimality of A* Tree Search: Blocking

1. f(n) is less than or equal to f(A)

= Definition of f-cost says:
f(n) = g(n) + h(n) = (path cost to n) + (est. cost of n to A)
f(A) = g(A) + h(A) = (path cost to A) + (est. cost of A to A)

= The admissible heuristic must underestimate the true cost A
h(A) = (est. costof Ato A) =0

= So now, we have to compare:
f(n) = g(n) + h(n) = (path cost to n) + (est. cost of n to A)
f(A) = g(A) = (path cost to A)

®= h(n) must be an underestimate of the true cost from n to A
(path cost to n) + (est. cost of n to A) < (path cost to A)
g(n) + h(n) < g(A)
f(n) < f(A)

-——

Optimality of A* Tree Search: Blocking

Proof:
" |magine B is on the fringe

= Some ancestor n of A is on the
fringe, too (maybe Al)

= Claim: n will be expanded before B

1. f(n) is less or equal to f(A)
2. f(A) is less than f(B)

Optimality of A* Tree Search: Blocking

2. f(A) is less than f(B)

= We know that:
f(A) = g(A) + h(A) = (path cost to A) + (est. cost of Ato A)
f(B) = g(B) + h(B) = (path cost to B) + (est. cost of B to B)

= The heuristic must underestimate the true cost:
h(A)=h(B)=0
= So now, we have to compare:
f(A) = g(A) = (path cost to A)
f(B) = g(B) = (path cost to B)
= We assumed that B is suboptimal! So
(path cost to A) < (path cost to B)

g(A) < g(B)
f(A) < f(B)

Proof:

Optimality of A* Tree Search: Blocking

Imagine B is on the fringe

Some ancestor n of A is on the
fringe, too (maybe Al)

Claim: n will be expanded before B
1. f(n) is less or equal to f(A)

2. f(A) is less than f(B)

3. nexpands before B
All ancestors of A expand before B
A expands before B
A* search is optimal

Creating Heuristics

YOuUu GOT

HEURISTILC
UFGRADE!

Creating Admissible Heuristics

= Most of the work in solving hard search problems optimally is in coming up
with admissible heuristics

= Often, admissible heuristics are solutions to relaxed problems, where new
actions are available

Graph Search

Tree Search: Extra Work!

= Failure to detect repeated states can cause exponentially more work.

/ State Graph \

.f ™
)
B =0
e N
Y. .Y
N 4

-~

- " .'_‘_/""'

Search Tree

~

Graph Search

" |dea: never expand a state twice

= How to implement:

*= Tree search + set of expanded states (“closed set”)
= Expand the search tree node-by-node, but...

Before expanding a node, check to make sure its state has never been
expanded before

= |f not new, skip it, if new add to closed set

" |mportant: store the closed set as a set, not a list

= Can graph search wreck completeness? Why/why not?

= How about optimality?

Graph Search Pseudo-Code

function GRAPH-SEARCH(problem, fringe) return a solution, or failure
closed <— an empty set
fringe < INSERT(MAKE-NODE(INITIAL-STATE|problem)|), fringe)
loop do
if fringe is empty then return failure
node <~ REMOVE-FRONT(fringe)
if GOAL-TEST(problem, STATE[node|) then return node
if STATE[node| is not in closed then
add STATE[node| to closed
for child-node in EXPAND(STATE|node|, problem) do
fringe < INSERT(child-node, fringe)
end
end

A* Graph Search Gone Wrong?

State space graph Search tree Closed set
{s B }
S (0+2)
SA (1+4) SB (1+1)

TN

SBC (3+1) SBS (2+2)

A* Graph Search Gone Wrong?

State space graph Search tree Closed set
{s B }
S (0+2)
SA (1+4) SB (1+1)

TN

SBC (3+1) -SBSH2+2

@ SBCA (4+4) SBCG (6+0) SBCB (5+1)

A* Graph Search Gone Wrong?

State space graph Search tree Closed set
{SBCA }
S (0+2)
SA (1+4) SB (1+1)

' TN

—SAE+H SBC(3+1) -SBSH3+3)-

e .

SBCA (4+4) ((SBCG (6+0)) -SBEBHS+H-

Consistency of Heuristics

= Main idea: estimated heuristic costs < actual costs

= Admissibility: heuristic cost < actual cost to goal
h(A) < actual cost from Ato G

= Consistency: heuristic “arc” cost < actual cost for each arc

h(A) — h(C) < cost(A to C)

= Consequences of consistency:

= The f value along a path never decreases

h(A) < cost(A to C) + h(C)

= A* graph search is optimal

Optimality

Tree search:
= A*is optimal if heuristic is admissible
= UCS is a special case (h =0)

Graph search:
= A* optimal if heuristic is consistent
= UCS optimal (h =0 is consistent)

Consistency implies admissibility

In general, most natural admissible heuristics
tend to be consistent, especially if from
relaxed problems

A*: Summary

= A* uses both backward costs and (estimates of) forward costs
= A* js optimal with admissible / consistent heuristics

" Heuristic design is key: often use relaxed problems

, (

e

STA303: Artificial Intelligence

Games

Fang Kong

https://fangkongx.github.io/

Part of slide credits: ai.berkeley.edu

https://fangkongx.github.io/

Types of Games

= Game = task environment with > 1 agent

= Axes:
= Deterministic or stochastic?
» Perfect information (fully observable)?
"= Two, three, or more players?

" Teams or individuals?
g T T ————
" Turn-taking or simultaneous?

= /erosum?

= Want algorithms for calculating a strategy (policy) which recommends a
move from every possible state

Deterministic Games

= Many possible formalizations, one is:
= States: S (start at s;)
» Players: P={1...N} (usually take turns)
= Actions: A (may depend on player/state)
" Transition function: Sx A — S
= Terminal test: S - {true, false}
= Terminal utilities: SxP - R

= Solution for a player is a policy: S - A

Zero-Sum Games

= Zero-Sum\Games = General-Sum Games
= Agents have opposite utilities = Agents have independent utilities

= Pure com = Cooperation, indifference, competition,
= One maximizes, the other minimizes shifting alliances, and more are all possible

= Team Games
= Common payoff for all team members

Minimax Values

States Under Agent’s Control: States Under Opponent’s Control:
V(s) = max V(') V(s') = min V(s)
s’ €successors(s) sesuccessors(s’)

Terminal States:
V(s) = known

Adversarial Search (Minimax)

= Deterministic, zero-sum games:
= Tic-tac-toe, chess, checkers
" One player maximizes result

® The other minimizes result

= Minimax search:

= A state-space search tree
= Players alternate turns

= Compute each node’s minimax value:

the best achievable utility against a
rational (optimal) adversary

Minimax values:
computed recursively

AN AN
(I

Terminal values:
part of the game

Minimax Implementation

Gef max-value(state):)
initialize v = -0
for each successor of state:
v = max(v, min-value(successor))

return v

- _/
V(s) = max V(s

s’ Esuccessors(s)

(4

ef min-value(state):

initialize v = +o0

for each successor of state:
v = min(v, max-value(successor))

~

_ return v Y
V(s = min V(s)

s€successors(s’)

Minimax Implementation (Dispatch)

P

def value(state):

A\

if the state is a terminal state: return the state’s utility
if the next agent is MIAX: return max-value(state)
if the next agent is MIN: return min-value(state)

N

4

/def max-value(state): \
initialize v = -o0
for each successor of state:

v = max(v, value(successor))
return v

. J

4

4

(def min-value(state): \
initialize v = o0
for each successor of state:

v = min(v, value(successor))
return v

_ J

= What if the game is not zero-sum, or has multiple players?

Multi-Agent Utilities

Generalization of minimax:
Terminals have utility tuples
Node values are also utility tuples
Each player maximizes its own component
Can give rise to cooperation and
competition dynamically...

L]
1,6,6 7,1,2 6,1,2 7,2,1 5,1,7 1,5,2 7,7,1 5,2,5

Minimax Efficiency

|
'3

= How efficient is minimax?
= Just like (exhaustive) DFS
" Time: O(b™)
= Space: O(bm)

= Example: For chess, b = 35, m = 100
= Exact solution is completely infeasible

= But, do we need to explore the whole
tree?

Game Tree Pruning

12

Minimax Pruning

2 14 5 2

The order of generation matters:
more pruning is possible if good moves come first

Alpha-Beta Pruning

" General case (pruning children of MIN node)

We're computing the MIN-VALUE at some node n
We’re looping over n’s children

n’s estimate of the childrens’ min is dropping
Who cares about n’s value? MAX

Let a be the best value that MAX can get so far at any
choice point along the current path from the root

If n becomes worse than a, MAX will avoid it, so we can
prune n’s other children (it’s already bad enough that it
won’t be played)

" Pruning children of MAX node is symmetric

Let B be the best value that MIN can get so far at any
choice point along the current path from the root

MAX

MIN

MAX

MIN

Alpha-Beta Implementation

a: MAX’s best option on path to root
B: MIN’s best option on path to root

~

/def max-value(state, a, B):

initialize v = -0

for each successor of state:
v = max(v, value(successor, a, B))
ifv>pBreturnv
a = max(a, v)

\ return v /

a

ef min-value(state, a, B):

initialize v = +o0

for each successor of state:
v = min(v, value(successor, a, B))
ifv<areturnv

B = min(pB, v)

~

\ return v /

Alpha-Beta Quiz

10

50

Alpha-Beta Pruning Properties

= This pruning has no effect on minimax value computed for the root!

= Values of intermediate nodes might be wrong
= |mportant: children of the root may have the wrong value max
= So the most naive version won’t let you do action selection

* Good child ordering improves effectiveness of pruning min

= With “perfect ordering”:
*= Time complexity drops to O(b™/2) 10 10 0
= Doubles solvable depth!
= Full search of, e.g. chess, is still hopeless...

Resource Limits

Problem: In realistic games, cannot search to leaves!

Solution: Depth-limited search
= |nstead, search only to a limited depth in the tree

= Replace terminal utilities with an evaluation function for
non-terminal positions

Example:
= Suppose we have 100 seconds, can explore 10K nodes / sec
= So can check 1M nodes per move
" - reaches about depth 8 — decent chess program

Guarantee of optimal play is gone
More plies makes a BIG difference

Use iterative deepening for an anytime algorithm

v

/

? ?

max

min

Evaluation Functions

= Evaluation functions score non-terminals in depth-limited search

100 Welt X

2@ [0 @lz@
2 2¥rz0

Black to move

White slightly better

10t el el
B

White to move

Black winning

= |deal function: returns the actual minimax value of the position
= |n practice: typically weighted linear sum of features:

Eval(s) = w1 f1(s8) +wafo(s) + ... + wnfn(s)

= E.g. fi(s) = (hum white queens — num black queens), etc.
= Or a more complex nonlinear function (e.g., NN) trained by self-play RL

b 4

Uncertain Outcomes

Expectimax Search

Why wouldn’t we know what the result of an action will be?
= Explicit randomness: rolling dice
= Unpredictable opponents: the ghosts respond randomly
= Actions can fail: when moving a robot, wheels might slip

Values should now reflect average-case (expectimax)
outcomes, not worst-case (minimax) outcomes

Expectimax search: compute the average score under
optimal play
= Max nodes as in minimax search

= Chance nodes are like min nodes but the outcome is uncertain
= Calculate their expected utilities

|.e. take weighted average (expectation) of children

Later, we’ll learn how to formalize the underlying uncertain-
result problems as Markov Decision Processes

10

10

max

chance

9 100

[Demo: min vs exp (L7D1,2)]

Expectimax Pseudocode

def value(state):

N\

if the state is a terminal state: return the state’s utility
if the next agent is MAX: return max-value(state)
if the next agent is EXP: return exp-value(state)

~

J

/def max-value(state):
initialize v = -00
for each successor of state:

return v

_

~

v = max(v, value(successor))

)

<

)

/def exp-value(state):

initialize v=0

for each successor of state:
p = probability(successor)
v += p * value(successor)

\ return v

Expectimax Pseudocode

Gef exp-value(state):
initialize v=0

~

for each successor of state:
p = probability(successor)
v += p * value(successor)

\ return v

1/2

/

1/3

v=(1/2)(8) +(1/3) (24) + (1/6) (-12) =10

1/6

-12

Expectimax Pruning?

Depth-Limited Expectimax

E]

]

O B

Estimate of true \
400! 300 expectimax value

Y ¥\ (which would
require a lot of
work to compute))

492 362

STA303: Artificial Intelligence

Markov Decision Processes

Fang Kong

https://fangkongx.github.io/

Slide credits: ai.berkeley.edu

https://fangkongx.github.io/

Markov Decision Processes

= An MDP is defined by:

= Asetofstatess e S

A set of actionsa € A

A transition function T(s, a, s’)
= Probability that a from s leadsto s/, i.e., P(s’| s, a)
= Also called the model or the dynamics

A reward function R(s, a, s’)
= Sometimes just R(s) or R(s’)

A start state

Maybe a terminal state

[Demo — gridworld manual intro (L8D1)]

What is Markov about MDPs?

= “Markov” generally means that given the present state, the
future and the past are independent

= For Markov decision processes, “Markov” means action
outcomes depend only on the current state

P(St—i—l = Sl\St — StaAt = Ay, Si—1 = St—1,At—1, ...5 = So)

Andrey Markov
P(St_|_1 = S"St = S¢, At = Clt) (1856-1922)

= This is just like search, where the successor function could only
depend on the current state (not the history)

Policies

" For MDPs, we want an optimal policy n*: S - A

= A policy t gives an action for each state

= An optimal policy is one that maximizes expected
utility if followed

Optimal policy when R(s, a, s’) =-0.03
for all non-terminals s

MDP Search Trees

= Each MDP state projects an expectimax-like search tree

As — S iS a State

~
~

/—> (s,a,s’) called a transition
’ s,a,S T(s,a,s’) = P(s’[s,a) N
\\\\‘ R(S,a,S’)
N\

Utilities of Sequences

Discounting

" |t’s reasonable to maximize the sum of rewards
" |t’s also reasonable to prefer rewards now to rewards later
= One solution: values of rewards decay exponentially

Worth Now Worth Next Step Worth In Two Steps

Visualizing Discounting

= How to discount?

= Each time we descend a level, we
multiply in the discount once

* Why discount?

= Sooner rewards probably do have
higher utility than later rewards

= Also helps our algorithms converge

= Example: discount of 0.5
= U([1,2,3])=1*1+0.5%2 + 0.25*3
= U([1,2,3]) < U([3,2,1])

Solving MDPs

Optimal Quantities

"= The value (utility) of a state s:
V*(s) = expected utility starting in s and

. _ sisa
acting optimally state
= The value (utility) of a g-state (s,a): és_’;gti: :

Q’(s,a) = expected utility starting out -
having taken action a from state s and s,a,s’ (s,a,s) is a
(thereafter) acting optimally transition

=" The optimal policy:
n'(s) = optimal action from state s

[Demo: gridworld values (L9D1)]

The Bellman Equations

How to be optimal:

Step 1: Take correct first action

The Bellman Equations

= Definition of “optimal utility” via expectimax recurrence
gives a simple one-step lookahead relationship amongst
optimal utility values -

V*(s) = max Q*(s, a)

Q*(s,a) =} T(s,a,5) {R(S, a,s’) + ’yV*(s’)} o

V*(s) = mO?XZT(S,a, s") {R(s,a, s") + ny*(s')}

" These are the Bellman equations, and they characterize
optimal values in a way we’ll use over and over

Racing Search Tree

= Problem: States are repeated

= |dea: Only compute needed
guantities once

= Problem: Tree goes on forever

= |dea: Do a depth-limited
computation, but with increasing
depths until change is small

= Note: deep parts of the tree
eventually don’t matterify<1

R CHORNERRRE CHEAT TR EHLRME TR

il
'Y

—
-

Time-Limited Values

= Key idea: time-limited values

= Define V,(s) to be the optimal value of s if the game ends
in k more time steps
= Equivalently, it’'s what a depth-k expectimax would give from s

= Va(@)

T

CROCR A

[Demo — time-limited values (L8D6)]

Value lteration

Value lteration

Start with Vy(s) = 0: no time steps left means an expected reward sum of zero

Given vector of V,(s) values, do one ply of expectimax from each state:

Viet1(s) < mC?XZT(S,a,, s") {R(s,a, s + *ka(s/)}

Repeat until convergence

Complexity of each iteration: O(S?A)

Theorem: will converge to unique optimal values
= Basic idea: approximations get refined towards optimal values
= Policy may converge long before values do

Convergence

How do we know the V, vectors are going to converge?

Vi(s) Vit1(s)

Case 1: If the tree has maximum depth M, then V,, holds
the actual untruncated values

Case 2: If the discount is less than 1

= Sketch: For any state V| and V,,1 can be viewed as depth
k+1 expectimax results in nearly identical search trees

= The difference is that on the bottom layer, V., has actual
rewards while V| has zeros

= That last layer is at best all Ryjax

= |tisat worst Ry / \ /

= But everything is discounted by yk that far out
= So V, and V,,; are at most y* max|R| different
= So as kincreases, the values converge

Policy Methods

Policy Evaluation

Fixed Policies

Do the optimal action Do what 7 says to do

-"s,a,S

;\A
A s

= Expectimax trees max over all actions to compute the optimal values

= |f we fixed some policy nt(s), then the tree would be simpler — only one action per state
= .. though the tree’s value would depend on which policy we fixed

Utilities for a Fixed Policy

Another basic operation: compute the utility of a state s
under a fixed (generally non-optimal) policy

Define the utility of a state s, under a fixed policy m:
V™(s) = expected total discounted rewards starting in s and following &t

Recursive relation (one-step look-ahead / Bellman equation):

VT(s) =) T(s,m(s),s)R(s,7(s),8) + V()]

Policy Evaluation

How do we calculate the V’s for a fixed policy ©?

Idea 1: Turn recursive Bellman equations into updates
(like value iteration)

Vo(s) =0 ,s;”%f(s),s’
.

ka—l—l(s) — ZT(S, 7w(s),s)[R(s,m(s),s) + kaW(S’)]

S

Efficiency: O(S?) per iteration

Idea 2: Without the maxes, the Bellman equations are just a linear system
= Solve with Matlab (or your favorite linear system solver)

Policy Extraction

Computing Actions from Values

Let’s imagine we have the optimal values V*(s)

How should we act?

=" |t’s not obvious!

We need to do a mini-expectimax (one step)

m*(s) = arg Cl;naXZT(s, a,s)[R(s,a,s) +~V*(s)]

S

This is called policy extraction, since it gets the policy implied by the values

Computing Actions from Q-Values

= Let’s imagine we have the optimal g-values: WW
ANV
* How should we act? v‘.}‘
= Completely trivial to decide! e °'89 00

" |mportant lesson: actions are easier to select from g-values than values!

Policy Iteration

Problems with Value Iteration

= Value iteration repeats the Bellman updates:

Vi41(s) < mC?XZT(S,a, s") [R(s,a, s + 'ka(s’)]

S

= Problem 1: It’s slow — O(S%A) per iteration

" Problem 2: The “arg max” at each state rarely changes

= Problem 3: The policy often converges long before the values

[Demo: value iteration (L9D2)]

Policy Iteration

= Alternative approach for optimal values:

= Step 1: Policy evaluation: calculate utilities for some fixed policy (not optimal
utilities!) until convergence

= Step 2: Policy improvement: update policy using one-step look-ahead with resulting
converged (but not optimal!) utilities as future values

= Repeat steps until policy converges

= This is policy iteration
= |t’s still optimal!

= Can converge (much) faster under some conditions

Policy Iteration (Pl)

= Evaluation: For fixed current policy =, find values with policy evaluation:
= |terate until values converge:

Vit 1 (s) < Y. T(s,mi(s),s') |R(s,mi(s),s") + v V(s

= |mprovement: For fixed values, get a better policy using policy extraction
= One-step look-ahead:

mi4+1(s) = arg maXZT(S, a,s) {R(s, a,s’) + ’yVWi(S/)}

S

Convergence of Pl

= 1. Improvement: Does each policy improvement step produce a better policy?

= 2. Convergence: Does Pl converge to an optimal policy?

Comparison

Both value iteration and policy iteration compute the same thing (all optimal values)

In value iteration:

= Every iteration updates both the values and (implicitly) the policy
= We don’t track the policy, but taking the max over actions implicitly recomputes it

In policy iteration:

= We do several passes that update utilities with fixed policy (each pass is fast because we
consider only one action, not all of them)

= After the policy is evaluated, a new policy is chosen (slow like a value iteration pass)
" The new policy will be better (or we’re done)

Both are dynamic programs for solving MDPs

STA303: Artificial Intelligence

Reinforcement Learning

Fang Kong

https://fangkongx.github.io/

Slide credits: ai.berkeley.edu

https://fangkongx.github.io/

Reinforcement Learning

= Still assume a Markov decision process (MDP):

= Asetofstatess € S
= A set of actions (per state) A(s)

= A transition model T(s,a,s’)
= Areward function R(s,a,s’)

1 200
Cod™ R
Warm N 35 -3
G >

Overheated

= Still looking for a policy m(s)

= New twist: don’t know T or R

= |.e. we don’t know which states are good or what the actions do
= Must explore new states and actions to discover how the world works

Approaches to reinforcement learning

1. Model-based: Learn the model, solve it, execute the solution

2. Learn values from experiences, use to make decisions
a. Direct evaluation
b. Temporal difference learning

c. Q-learning

3. Optimize the policy directly

Model-Based RL

Model-Based Learning

= Model-Based Idea:

= Learn an approximate model based on experiences
= Solve for values as if the learned model were correct

= Step 1: Learn empirical MDP model
= Count outcomes s’ for each s, a
= Directly estimate each entry in 7(s,a,s’) from counts
= Discover each R(s,a,s’) when we experience the transition

= Step 2: Solve the learned MDP

= Use, e.g., value or policy iteration, as before

Example: Model-Based Learning

Input Policy w

Observed Episodes (Training)

Episode 1

-
B, east, C, -1
C, east, D, -1

~N

Assume:y =1

[+
% D, exit, X, 10)

Episode 3

4)
E, north, C, -1
C,east, D, -1

Episode 2

-
B, east, C, -1
C, east, D, -1

~N

' +
\D, exit, X, 10)

Learned Model

T(s,a,s’)

[+
% D, exit, X, 10)

Episode 4

4)
E, north, C, -1
C, east, A, -1

-

4 T(B, east, C) =1.00

P(C, east, D) =0.75
P(C, east, A) =0.25

~

J

R(s,a,s’)

-

% A, exit, X, -10)

-

R(B, east, C) =-1
R(C, east, D) =-1
R(D, exit, x) = +10

~

J

Pros and cons

= Pro:

= Makes efficient use of experiences (low sample complexity)

= Con:

= May not scale to large state spaces
= Solving MDP is intractable for very large | S|

= RL feedback loop tends to magnify small model errors
" Much harder when the environment is partially observable

Basic idea of model-free methods

" To approximate expectations with respect to a distribution, you
can either
" Estimate the distribution from samples, compute an expectation

" Or, bypass the distribution and estimate the expectation from samples
directly

Example: Expected Age

Goal: Compute expected age of STA303 students

4 Known P(A))

E[A]=>_P(a)-a = 0.35x20 +...

Without P(A), instead collect samples [a,, a,, ... 3]

/ “Model Based”: estimate P(A): \

Why does this \7 IS(A=a)=N /N
a

work? Because
eventually you

learn the right E[A] = Za P(a)-a

ﬁModeI Free”: estimate expectatioh

model. /

Z Why does this
E[A] ~ 1/N Zi a work? Because

samples appear
with the right

\ frequencies.

—

Passive Reinforcement Learning

= Simplified task: policy evaluation 'C lﬂ
" |nput: a fixed policy 1(s)
" You don’t know T and R
= Goal: learn the state values \/"(s)

Direct evaluation

" Goal: Estimate V7(s), i.e., expected total discounted
reward from s onwards

= |dea:
= Use returns, the actual sums of discounted rewards from s

= Average over multiple trials and visits to s

* This is called direct evaluation (or direct utility
estimation)

Example: Direct Estimation

Input Policy & Observed Episodes (Training) Output Values
Episode 1 Episode 2

4 N\
B, east, C, -1 B, east, C, -1
C, east, D, -1 C, east, D, -1
% D, exit, X, +10) % D, exit, X, +10/

Episode 3 Episode 4

4 N\)
E, north, C, -1 E, north, C, -1
C,east, D, -1 C, east, A, -1
Assume:y =1 i i -
% D, exit, X, +1O/ % A, exit, X, 10)

Problems with Direct Estimation

= What'’s good about direct estimation? Output Values

" |t's easy to understand

" |t doesn’t require any knowledge of T and R

" |t converges to the right answer in the limit

= What's bad about it?
* Each state must be learned separately (fixable)

" |tignores information about state connections

If Band E both go to C
under this policy, how can
their values be different?

= So, it takes a long time to learn

E.g., B=at home, study hard
E=at library, study hard
C=know material, go to exam

Temporal Difference Learning

" Bigidea: learn from every experience!
= Update V(s) each time we experience a transition (s, a, s’, r)
= Likely outcomes s’ will contribute updates more often

* Temporal difference learning of values
= Policy still fixed, still doing evaluation!
= Move values toward value of whatever successor occurs: running average

Sample of V(s): sample = R(s,7(s),s") +~4V™(s)
Update to V(s): VT(s) «+ (1 —a)V"(s) 4+ (a)sample

Same update: VT(s) <+ V™(s) + a(sample — V™ (s))

Running averages contd.

" What if we use a weighted average with a fixed weight?

" U, = (1-0) ppq + 0 X,

"n=1l p=x

"n=2 W= (1-a)-p, +ox, = (1-a) - x; + ax,

" n=3 3= (1-a) - pu, + oxs = (1-a)? - x; + o(1-a)x, + ouxs

" n=4 p,= (1-a) - ps+ox, = (1-a)3 - x; + o(1-a)?x, + a(1-0)x5 + ox,
= |.e., exponential forgetting of old values
" 1 is unbiased

TD as approximate Bellman update

" |dea 3: Update values by maintaining a running average
= sample = R(s,n(s),s’) + yV*(s’)
= V7(s) « (1-a) - V™(s) + o - sample
= VT(s) « V™s) + o - [sample - V*(s)]
* This is the temporal difference learning rule
= [sample - V*(s)] is the “TD error”
= o is the learning rate

= Observe a sample, move V7™(s) a little bit to make it more
consistent with its neighbor V™ (s’)

Example: TD Value Estimation

Input Policy & Observed Episodes (Training) Output Values

Episode 1 Episode 2

4 N\
B, east, C, -1 B, east, C, -1
C, east, D, -1 C, east, D, -1
% D, exit, X, +10) % D, exit, X, +10/

Episode 3 Episode 4

4 N\)
E, north, C, -1 E, north, C, -1
C,east, D, -1 C, east, A, -1
Assume:y =1 i i -
% D, exit, X, +1O/ % A, exit, X, 10)

Example: TD Value Estimation

. /
Experience transition i: (s;, a;, S;,7;).

Compute sampled value “target”: r; + yV™(s;).

Compute “TD error”: §; = (ri +)/V”(Sl-')) —VT(s;).

Update: V™ (s;) += a; - 6;.

V(s)

0

-2

9

-
B, east, C, -1

C, east, D, -1

% D, exit, X, +10)

-
B, east, C, -1

C, east, D, -1

% D, exit, X, +10)

4)
E, north, C, -1
C,east, D, -1

10

M{O[O|T|>]|n

8

i|s a s'"| r | r+yV™(s’) V™ (s))
1| B | east C | -1 -1+0 0 -1
2| C| east D | -1 -1+0 0 -1
31D exit -1 10 10+ 0 0 +10
4| B east C | -1 -1+ -1 -1 -1
5| C | east D | -1 -1+ 10 -1 +10
6| D exit -1 10 10+ 0 10 0
71 E| north | C | -1 -1+9 0 +8

] +
\D, exit, X, 10)

4)
E, north, C, -1
C, east, A, -1

% A, exit, X -10)

Problems with TD Value Learning

= Model-free policy evaluation! & &

= Bellman updates with running sample mean! & &

S

AANAANA AANAA LA AN A

» Need the transition model to improve the policy!

Q-learning as approximate Q-iteration

Recall the definition of Q values:

= OQ°(s,a) = expected return from doing a in s and then behaving optimally
thereafter; and 7' (s) = max,Q’(s,a)

Bellman equation for Q values:

" Q*(s,a) = 2y T(s,0,5')[R(s,a,s") + y max, Q*(s",a’) |
Approximate Bellman update for Q values:

" Q(s,a) « (1-a)-Qfs,a) + a-[R(s,a,s") +ymax,Q(s’,a’)]

We obtain a policy from learned Q(s,a), with no model!
= (No free lunch: Q(s,a) table is |A| times bigger than V(s) table)

Q-Learning

" Learn Q(s,a) values as you go
= Receive a sample (s,a,s’,r) vvv
* Consider your old estimate: Q(s,a) 100
= Consider your new sample estimate: v v
sample = R(s,a,s’) + y max, Q(s’,a’) >Q4.>Q< s
" Incorporate the new estimate into a running average: }g' é{}al >Q<

Q(s,a) « (1-a) Q(s,a) + a - [sample]

Q-VALUES AFTER 1000 EPISODES

[Demo: Q-learning — gridworld (L10D2)]
[Demo: Q-learning — crawler (L10D3)]

Q-Learning Properties

= Amazing result: Q-learning converges to optimal policy -- even
if samples are generated from a suboptimal policy!

" This is called off-policy learning

= Caveats:
= You have to explore enough
" You have to eventually make the learning rate
small enough

= .. but not decrease it too quickly

= Basically, in the limit, it doesn’t matter how you select actions (!)

Exploration vs. Exploitation

b7 7

AN
Srennc!

L £T0
G2

Exploration vs. Exploitation

" Exploration: try new things
" Exploitation: do what’s best given what you’ve learned so far

= Key point: pure exploitation often gets stuck in a rut and never
finds an optimal policy!

135

Exploration method 1: e-greedy

= ¢-greedy exploration
" Every time step, flip a biased coin
= With (small) probability €, act randomly
= With (large) probability 1-¢, act on current policy /(

" Properties of e-greedy exploration
" Every s,a pair is tried infinitely often
" Does a lot of stupid things
= Jumping off a cliff lots of times to make sure it hurts

= Keeps doing stupid things for ever
" Decay € towards O

Method 2: Optimistic Exploration Functions

Exploration functions implement this tradeoff

= Takes a value estimate u and a visit count n, and
returns an optimistic utility, e.g., f(u,n) =u + k/\/n

Regular Q-update:)
" Q(s,a) « (1-a) - Q(s,a) + a - [R(s,a,5") +y max,Q(s’,a)]
Modified Q-update:

" Q(s,a) « (1-a)-Qfs,a) + a-[R(s,a,s’) +y max, f(Q(s’,a’),n(s’,a’))]

Note: this propagates the “bonus” back to states that lead to
unknown states as well!

Approximate Q-Learning

Generalizing Across States

Basic Q-Learning keeps a table of all Q-values

In realistic situations, we cannot possibly learn
about every single state!

= Too many states to visit them all in training

= Too many states to hold the Q-tables in memory

Instead, we want to generalize:

= Learn about some small number of training states from
experience

= Generalize that experience to new, similar situations
= Can we apply some machine learning tools to do this?

[demo — RL pacman]

Feature-Based Representations

= Solution: describe a state using a vector of
features

= Features are functions from states to real
numbers (often 0/1) that capture important
properties of the state

= Example features:

= Distance to closest ghost f..;
Distance to closest dot
Number of ghosts
1 / (distance to closest dot) ;o7
= |s Pacman in a tunnel? (0/1)
- etc.

= Can also describe a g-state (s, a) with features
(e.g., action moves closer to food)

Linear Value Functions

" We can express V and Q (approximately) as weighted linear
functions of feature values:

" Vg(s) = 0,f(s) + O,F,(s) + ... + 0. (s)
" (Jg(s,a) = 0,f,(s,a) + 0,1,(s,a) + ... + 0,f (s,a)

= Advantage: our experience is summed up in a few powerful numbers
= Can compress a value function for chess (10* states) down to about 30 weights!

= Disadvantage: states may share features but have very different expected utility!

SGD for Linear Value Functions

" Goal: Find parameter vector 6 that minimizes the mean squared
error between the true and approximate value function

1
J(6) = Eql5 (V"(s) = Vo(s))']

" Stochastic gradient descent:

0/ (6)
a0

=0+ a(V”(s) — Vy (S))

00—«

dVp(s)
a6

Supervised Learning for Value Function Approximation

" Let V™(s) denote the true target value function
" Use supervised learning on "training data" to predict the value

function:
(S]_; Gl)l (SZI GZ)) LN’ (ST; GT)

" For each data sample
0«0+ a(G,—Vy6o))f (st)

Temporal-Difference (TD) Learning Objective

0«0+ a(V”(s) — Vg (s))f(s)

" InTD learning, 1:4q4 + ¥V (S¢41) is a data sample for the
target

= Apply supervised learning on "training data":
(s1,72 + YVo(52)), (52,13 + ¥V (S3)), e, (ST, 1)

" For each data sample, update

0 <0+ “(rt+1 + YVo(St+1) — Vo (St))f (5¢)

Q-Value Function Approximation

" Approximate the action-value function:
QB(S' a) = Qn(si a)
" Objective: Minimize the mean squared error:

1
J(©) = Ex |5 (Q7(s,@) — Qp(s, @))?

" Stochastic Gradient Descent on a single sample

Intuitive interpretation

" Original Q-learning rule tries to reduce prediction error at s,a:
" Q(s,a) « Q(s,a) + a-[R(s,a,s’) +y max, Q(s’,a’)-Q(s,a)]
" |nstead, we update the weights to try to reduce the error at s,a:
" w,« W;+ a-[R(s,a,s’) +y max, Q(s’,a’) - Q(s,a)] 0Qy(s,a)/ow;
= w;+ o - [R(s,a,s") +y max, Q(s’,a’) - Q(s,a)] fi(s,a)
= |ntuitive interpretation:
" Adjust weights of active features

" |f something bad happens, blame the features we saw; decrease value of
states with those features. If something good happens, increase value!

Policy Search

Policy Search

Problem: often the feature-based policies that work well (win games, maximize
utilities) aren’t the ones that approximate V / Q best

= E.g.your value functions were probably horrible estimates of future rewards, but they still produced
good decisions

= Q-learning’s priority: get Q-values close (modeling)
= Action selection priority: get ordering of Q-values right (prediction)

Solution: learn policies that maximize rewards, not the values that predict them

Policy search: start with an ok solution (e.g. Q-learning) then fine-tune by hill climbing
(or gradient ascent!) on feature weights

Parameterized Policy

= A policy can be parameterized as mg(als)

" The policy can be deterministic: a = mg(s)
= Or stochastic: mg(al|s) = P(als; 0)

" O represents the parameters of the policy

= Simplest version:
= Start with initial policy m(s) that assigns probability to each action

0.3
0.2
0.1

0

Policy Gradient

= Sample actions according to policy T

= Update policy:

= |f an episode led to high utility, make sampled actions more likely

= |f an episode led to low utility, make sampled actions less likely

A1 A2 A3 A4 A5

0.4
0.3
0.2
0.1

0

A1 A2 A3 A4 A5

0.4
0.3
0.2
0.1

0

A1

A2

A3 A4 A5

STA303: Artificial Intelligence

Machine Learning Basics

Fang Kong

https://fangkongx.github.io/

Part of slide credits: ai.berkeley.edu; Stanford CS229; https://www.geeksforgeeks.org/

https://fangkongx.github.io/

Types of Machine Learning

" Supervised learning
= Use labeled data to predict on unseen points

" Unsupervised learning e oo

(dctxtl) (Identify Clusters)

" No labeled data Vol @ 'i'
"= Reinforcement learning

= Sequentially collect data and learn from feedback

Supervised Learning

" Trained on a “Labelled Dataset”
" |abelled datasets have both input and output parameters

Supervised Learning

Tasks in Supervised Learning

0.4 b=

0.2 =

-0.2p

-0.4 =

0.6

1 1 1 1 1 1 1
-05 -04 -03 -0.2 -0.1 0 0.1 0.2 20 30 40 50 60 70 80 90 100

Classification Regression

" Discover patterns and relationships using unlabeled data

* Without labeled target outputs

lot size (10° sq.ft)

Unsupervised Learning

supervised

1 A house

townhouse

B

0.5 1.0 1.5 2.0

2.5

3.0

lot size (10° sq.ft)

unsupervised

Tasks in Unsupervised Learning

Clustering

- K-Means
- Polynomial
- Hierarchical
- Fuzzy C-Means

Grouping data points into
clusters based on their
similarity

Unlabelled Data

Dimensionality Association
Reduction {82t Miniog)
- Principal - Apriori
Component Algorithm
Analysis - Eclat Algorithm
- Kernel Principal - FP-Growth
Analysis Algorithm
Reduce the dimensionality of Find the relationships
data while preserving its between variables in the
essential information large database

Labelled Clusters

. group

~e- barolo

K-means
e

PC2(19.2%)

-~ grignolino
~e- barbera

-2
@ x = Centroid)

00 25
PC1 (36.2%)

Reinforcement Learning

* |nteract with the environment by producing actions and receiving
feedback
\

Agent \T\\

= W
Environment
L

State: s

Reward: r Action: a

* Q-learning
* Deep Q-learning
 PPO

Machine Learning Workflow

1. Gather and organize data

" Preprocessing, cleaning, visualizing
2. Choose a model
3. Train and test your model, or iterate back tostep 2 or 1

4. Deploy your model

" Nearest neighbors sensitive to noise or mis-labeled data

K-Nearest Neighbors (KNN)

Smooth by having k nearest neighbors vote

1 NN 3 NN

A
noisy sample

.

every example in the blue
shaded area will be classified
correctly as the red class

every example in the blue
shaded area will be
misclassified as the blue class

= Voting over k nearest neighbors: classification
* (Weighted) average over k nearest neighbors: regression

[Pic by Olga Veksler]

Step 3: Training and Testing

Pract{ce
Exam

How to select a model?

" To solve a problem, which model should we choose?
= KNN or logistic regression?

= For KNN, which parameter k?

" Denote M = {M;,..., My} as all the models to choose

Select the one with the minimum training loss?

" Given the training set S
1. Train each model M, on S, to get some hypothesis h;.
2. Pick the hypotheses with the smallest training error.

" What'’s the problem?

" Lower training error prefers complex models
" These models usually overfits

Solution: Hold-out cross validation

= How do we check that we’re not overfitting during training?

= Split training data into 3 different sets:

= Training set
= Validation set
m Test set

= Experimentation cycle
= Learn parameters on training set
= Evaluate models on validation set
= Veryimportant: never “peek” at the test set!

training set Va"g:tt on | test set
train w/ k = 1 > err=7.3
trainw/ k=3 » err=1.1 >
v
train w/ k=10 > err = 10.5

testerr=1.2

Training
Data

Validation
Data

Test
Data

Foctice
Exam

Hold-out cross validation (cont’d)

" The final model is only trained on 70% of the training set

" Especially in the case with small training set
= Waste about 30% of the data

Improvement: k-fold cross validation

Training set
Training folds Test fold
A -
[\
1stiteration m— El
E
2"d jteration -: —> 52 &

i=1
3rd jteration . — E3

10th iteration - — E10

—

Evaluation: Confusion matrix

Given a set of records containing positive and negative results, the
computer is going to classify the records to be positive or negative

Positive: The computer classifies the result to be positive
Negative: The computer classifies the result to be negative

True: What the computer classifies is true
False: What the computer classifies is false

True Label

Accuracy

Prediction

= Accuracy = ———1 0 — 45157
Y = INITP+FN+FP _ 48+37+4+8

true negatives

True Label

- 37

true positives

Accuracy

Prediction

. Accuracy = TN+TP _ 48+37
Y = I NITPLFN+FP 484374448

1

True Label

= Limitation
= Suppose number of class 0 examples = 9990
= Number of class 1 examples = 10
" The model predicts every example as O
* Then the accuracy is 9990/10000=99.9%

®" The accuracy is misleading because the model does not detect any
example in class 1

Other metrics

« TP 3 7 Prediction 1 | relevant elements |
- P re C I S I O n = — false negatives true negatives
TP+FP 37+8 .. o

TP 37

m Recall = —
TP+FN 37+4)

True Label

2xPrecision*Recall
Precision+Recall

" F-measure =

How many selected How many rel t
tem | t? item lected
Precision = Recall = —

How to understand?

" A school is running a machine learning primary diabetes scanon
all of its students
= Diabetic (+) / Healthy (-)
» False positive is just a false alarm

= False negative
= Prediction is healthy but is diabetic
= Worst case among all 4 cases

= Accuracy
= Accuracy = (TP+TN)/(TP+FP+FN+TN)
* How many students did we correctly label out of all the students?

How to understand?

= A school is running a machine learning primary diabetes scanon
all of its students
= Diabetic (+) / Healthy (-)
= False positive is just a false alarm

= False negative
" Prediction is healthy but is diabetic
= \Worst case among all 4 cases

" Precision
* Precision = TP/(TP+FP)

" How many of those who we labeled as diabetic are actually diabetic?

How to understand?

= A school is running a machine learning primary diabetes scanon all
of its students
= Diabetic (+) / Healthy (-)
= False positive is just a false alarm

= False negative
" Prediction is healthy but is diabetic
= \Worst case among all 4 cases

" Recall (sensitivity)
» Recall = TP/(TP+FN)

= Of all the people who are diabetic, how many of those we correctly predict?

F1 score (F-Score / F-Measure)

F1 Score = 2*(Recall * Precision) / (Recall + Precision)

F1 Scorezg ((1/Recall + 1/Precision))™1

Harmonic mean (average) of the precision and recall

F1 Score is best if there is some sort of balance between
precision (p) & recall (r) in the system.

Oppositely F1 Score isn’t so high if one measure is improved at
the expense of the other.

For example, if Pis1 & Ris 0, F1 score is O.

Which to choose?

= Accuracy
= A great measure

= But only when you have symmetric datasets

= Precision
= Want to be more confident of your TP

" E.g. spam emails. We’d rather have some spam emails in inbox rather
than some regular emails in your spam box.

Which to choose?

= Recall

= |f FP is far better than FN or if the occurrence of FN is
unaccepted/intolerable

= Would like more extra FP (false alarms) over saving some FN
= E.g. diabetes. We'd rather get some healthy people labeled diabetic
over leaving a diabetic person labeled healthy
= F]1 score
" |f the costs of FP and FN are both important

STA303: Artificial Intelligence

Deep Learning

Fang Kong

https://fangkongx.github.io/

Part of slide credit: ai.berkeley.edu; SJTU VE445

https://fangkongx.github.io/

Single-layer perception by Rosenblatt [1958]

1 Rosenblatt [1958] i#

— R H BN ESS
B—NE "B 18
Inputs < . v cp(»Z._O Output STHITEIRIEE

- Hard § (Epﬁgﬁg)
e 0 SEENEHREIAE
AT —53ESH

NEw,,
Foul BUERREL - y=1: &1
-y =-1: %502
por Qunn) e@={ et

Slide credit: Weinan Zhang

Limitation of perception

" Minsky and Papert [1969]
showed that some rather .
elementary computations, j
such as XOR problem, could
not be done by Rosenblatt’s
one-layer perceptron x

- |leolele|le
s

= However Rosenblatt believed L] 94 o

the limitations could be T T \
‘ 1 ‘ »

overcome if more layers of Lo,
units to be added, but no

learning algorithm known to

obtain the weights yet

Solution: Add hidden layers

= Adding hidden layers to learn more general scenarios

class 1
class 2

REFEDR: xwi +x,w, +b =0

class 2

class 2 g /|\|3,%\ g-l_l-jp
ROESLH
XA —
FIDFRE

5
class 2 o class 2

Slide credit: Weinan Zhang

Non-linear activation functions

= Adding non-linearity allows the network to learn and represent
complex patterns in the data

= Common non-linear activation functions

Sigmoid Function Hyperbolic Tangent Rectified Linear Unit (RelU)
Q(Z) ol2) 0(2)
0.8} '@ | ' 05| 9@ | | 4 9')
06} 3}
0
0.4} 21
0.2} e 1]
0 4 ’ -1 : 0 -
-5 0 5 -5 0 5 -5 0 5
1 7= 8%
o — o z)=max (0, z
@)= == 0@) = 5= o(z) (0,)
@)= 0@ (1-0(2) ()= 1-0(@)? ') =10’ otheres
o' (z)=0(2) o(z) o \z)= 0(2) o ~ o, otherwise

[source: MIT 6.5191 introtodeeplearning.com]

2-Layer, 2-Neuron Neural Network

%\

2

1S

/

2-Layer, 2-Neuron Neural Network

intermediate output h;

W1

Wi1
X, W31 Z
W3q
X Wi
W»)
)3
X3 W32

,14/

intermediate output hy = (w121 + w9 + wW31x3)

1
. 1 . (3—('11,!11:1:1—I—'wgl:1_:2—|—'u..v31:1.:3)

2-Layer, 2-Neuron Neural Network

intermediate output h;

intermediate output h,

intermediate output ho = o (w21 + Wosxs + wW32x3)
1

1 + (_3—(’11,’12.’1}1—I—’U)QQ.’IJQ—l—’u,"32.’l.¢3)

2-Layer, 2-Neuron Neural Network

> >

Wi1
X, W31
W31
X5 Wi
W»)
X3 W3» .
Y

—_
2 /1/ intermediate output h,

== O'("U) 1]7... 1 + W2]7*2)
1

| (_2_("1-"1 hi+wahg)

intermediate output h;

W1

W,

2-Layer, 2-Neuron Neural Network

W1
intermediate output h
W71 2 —p 1
X1 Wi
W33
S et
X, Wi, W,
W7o
2 /1/- intermediate output h
X3 Wgz—; P 2

y = 6(wihy + wahs)

(wio(wiirr + worxe + w31x3) + woo(wisxry + waaks + wWs32xs3))

Vectorization

y =0 (wihy + wahs)
=0 (w10(w1171 + w21 + w3123) + Wwo O W12x1 + W22X2 + W32T3))

The same equation, formatted with matrices:

w11 W2
0} [1 %o @3 } wo1 W29
w31 W32

= 0 ([W11T1 + W12 + W31T3 W12T1 + W22X2 + W32T3 D
— [hi ho]

W9

U([h"l]2:2 } [el]) = O-("U,.’l]‘lvl + '1.1)2}),2) =

The same equation, formatted more compactly by introducing variables representing each matrix:

g(x X Wiayer 1) = h o(h x W, A o | =g

2-Layer, 2-Neuron Neural Network

O-(xr X UTl ayer 1) =i

TN

Shape (1, 3). Shape (3, 2). Shape (1, 2).
Input feature vector. Weights to be learned. Outputs of layer 1,
inputs to layer 2.

o (h X "ﬁ]["rlaycr 2) =i

N

Shape (1, 2). Shape (2, 1). Shape (1, 1).

Outputs of layer 1, Weights to be learned. Output of network.
inputs to layer 2.

Multi-Layer Neural Network

" |nput to a layer: some dim(x)-dimensional input vector

= Qutput of a layer: some dim(y)-dimensional output vector
" dim(y)is the number of neurons in the layer (1 output per neuron)

" Process of converting input to output:
= Multiply the (1, dim(x)) input vector with a (dim(x), dim(y)) weight vector.
The result has shape (1, dim(y)).
= Apply some non-linear function (e.g. sigmoid) to the result.
The result still has shape (1, dim(y)).

= Big idea: Chain layers together
" The input could come from a previous layer’s output
" The output could be used as the input to the next layer

Deep Neural Network

29)
Z§1> zéZ)
Z§1) Z?gz)
(1) (2)
2 (1) 2 (2)

A oy

()
J

4 A"
2 2{0UT)
n
Zén—l) 2;2
3 3
(OUT)—»p
<3
- (n)
2 Z 5 (n)
Z (k -1) o = nonlinear activation function

Universal approximation theorem

" Theorem (Universal Function Approximators). A two-layer neural
network with a sufficient number of neurons can approximate
any continuous function to any desired accuracy.

ni(x) = Relu(—5x —7.7)
n2(x) = Relu(—1.2x — 1.3)
na(x) = Relu(1.2x + 1)
ng(x) = Relu(1.2x — .2)
ns(x) = Relu(2x — 1.1)
ne(x) = Relu(5x — 5)

Z(x) = —ny(x) — nolx) — na(x)

+nql(x) + ns(x) + ng(x)

Hornik, Kurt, Maxwell Stinchcombe, and Halbert White. "Multilayer feedforward networks are universal approximators."
Neural networks 2.5 (1989): 359-366

Training: Backpropagation

191

Training Neural Networks

= Step 1: For each input in the training (sub)set x, predict a classification y
using the current weights

ol X Wissera) =k ol X Wesraso | =4y
= Step 2: Compare predictions with the true y values, using a loss function
» Higher value of loss function = bad model
= Lower value of loss function = good model
= Example: zero-one loss: count the number of misclassified inputs
» Example: log loss (derived from maximum likelihood)
" Example: sum of squared errors (more on this soon)

= Step 3: Use numerical method (e.g. gradient descent) to minimize loss
» |Loss is a function of the weights. Optimization goal: find weights that minimize loss

Optimization Procedure: Gradient Descent

" inlt W
= for 1iter =1, 2, ..
w <+ w —aV. LoSS (w)

= (¢:learning rate --- tweaking parameter that needs to be
chosen carefully

Computing Gradients

How do we compute gradients of these loss functions?

= Repeated application of the chain rule:

f f(x) = g(h(z))
Then f'(z) = ¢ (h(z))h' (z)

—> Derivatives can be computed by following well-defined procedures

Feed forward vs. Backpropagation

Compare outputs with correct
Outout unit é 0 v, =1(z) answer to get error derl\':z_tlves
utput units E_
Z = z Wi Vi l l a, v =1
e etz dE _ oE ay,
0z, ay, 0z,
Y = f(zk) £ = y £
) 1Z
2 = 2 Wik Y, Yk leout <
/€ H1 oE _ dE Vi
(')Zk ("yk (')Zk (’E B ()E
y]:f(zj) .) = 2 W}k?
Vi keHz2 %%
W, Zj = E Wi Xi oOF : 9E 3y,
I € Input Wi dz; dy; 9z
Input units

Make a prediction

u,J(lrl net(ll) hgl)

inputs 2 (2) outputs labels

Input layer hidden layer output layer
Two-layer feedforward neural network

Feed-forward prediction:

(1 1)
AV = 0y (netl?) = fa) (Y wi z,m) Yk = f(o)(net)) = Zu,k)h(
= > hgl) » Yk

where et =Y ulVa, net® = 3" wDhl)

J

Backpropagation

wj(lrl netgl) h(ll)

inputs outputs labels

1

L2

Input layer

hidden layer

output layer

Two-layer feedforward neural network

Feed-forward prediction:

Assume all the activation functions are sigmoid

Error function E = 1 3, (yx — di)?
g_ﬁ = Y — di
iﬁ%::ﬂmhwﬁ?ﬂén==m(1—ywhy)
= 32 = (e — di)ye(1 —)b

(2) (2) _

= wi) — wiy — nys — i)k — ye)h)

B = fay (netl?) = fy (O wihem) vk = Fiay(meti?) = fio (D

m J

w

@),)
kM

.....

(1) '
h;

net® = 3w
J

»
>

)

Y

Backpropagation (cont.)

inputs outputs labels e Error function E = § 3, (yx — di)?
(2) OE __
- " ® oy Yk T di
j
9_' Q e Dy = (1 — y)wi?)
J
2)

n oh” (1) (1) (1)
9&, O di 2oy —) (rets?) 2m = 1" (1= 1V) @

= 9% = A (1 - h§-”) >k w;(fj) (Y& — i)Yk (1 — Y)Tm

J,m

Input layer hidden layer output layer

2
= J(lr)n < w(l) h§-1) (1 - h§-”) Dk wl(c,;'(yk — di)yk(l — Yk)Tm

Two-layer feedforward neural network

Feed-forward prediction:

h“) = f()(net)) f()(Z (l)l‘m) y;l— f(o (net) f(o (Z](\I‘J)hgl))

m J
7= (21,0000) > KV > Uk

v[here nett) =" wll) 2., nety) =3 wi b\

J

STA303: Artificial Intelligence

Generalization

Fang Kong

https://fangkongx.github.io/

Part of slide credit: Stanford CS229

https://fangkongx.github.io/

Intuition

= Recall in previous classes

* We typically learn a model hg by minimizing the training loss/error

1 . N 2
‘ Jo = 2504 (o (x®) = y©)
= This is not the ultimate goal

" The ultimate goal

= Sample a test data from the test distribution D
= Measure the model’s error on the test data (test loss/error)

L(0) = E(w,y)wD[(y — he(x))z]
= Can be approximated by the average error on many sampled test examples

Challenges

" The test examples are unseen

= Even though the training set is sampled from the same distribution D, it can not
guaranteed that the test error is close to the training error

=" Minimizing training error may not lead to a small test error
= Important concepts

= Overfitting: the model predicts accurately on the training dataset but doesn’t
generalize well to other test examples

= Underfitting: the training error is relatively large (typically the test error is also
relatively large)

" How the test error is influenced by the learning procedure,
especially the choice of model parameterizations?

How about fitting a linear model? (cont’d)

0 fitting linear models on a large datast 1 ;itting linear models on a noiseless dataset

x training data x X 2 ' x training data
—— ground truth h* B
{.— best fit linear model

—— ground truth h™
1.04 — bestfit linear model

>
0.5

0.0

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
X X

Figure 8.3: The best fit linear Figure 8.4: The best fit linear
model on a much larger dataset model on a noiseless dataset also
still has a large training error. has a large training/test error.

* Fundamental bottleneck: linear model family’s inability to capture the
structure in the data

* Define model bias: the test error even if we were to fit it to a very (say,
infinitely) large training dataset

How about a 5th-degree polynomial? (cont’d)

fitting 5-th degree model on different datasets

1.5 1.5 [1.5

x training data
—— best fit 5-th degree model

% training data x training data

—— best fit 5-th degree model (\

—— best fit 5-th degree model

1.0 1.0 1.0

>
0.51

> >
0.54 0.54

0.0 0.0 0.0 1

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Figure 8.7: The best fit 5-th degree models on three different datasets gen-
erated from the same distribution behave quite differently, suggesting the
existence of a large variance.

= Failure: fitting patterns in the data that happened to be present in the
small, finite training set (NOT the real relationship between x and y)

" Define variance: the amount of variations across models learnt on multiple
different training datasets (drawn from the same underlying distribution)

Bias-variance trade-off

/—-— Optimal Tradeoff Test Error (= Bias? +Variance)

Variance

Error

Model Complexity

Figure 8.8: An illustration of the typical bias-variance tradeoft.

A mathematical decomposition (for regression)

205

Problem setting: regression

= Draw a training dataset S = {z(®,y(®}? . such that y® = h*(z(?) 4 £
where £ € N(0,0?).

" Train a model on the dataset S, denoted by hg.

= Take a test example (z,y) such that y = h*(z) + £ where £ ~ N(0, 02),
and measure the expected test error (averaged over the random draw of
the training set S and the randomness of £

MSE(z) = Es¢[(y — hs(z))’] (8.2)

Decomposition

" MSE(z) = E[(y — hs(2))"] = E[(§ + (h*(z) — hs(@)))"]

[1 + E[(h*(z) — hs(z))]
o? + E[(h*(z) — hs(x))’]

= Define hgyq(x) = Eg[(hs(x))]

* The model obtained by drawing an infinite number of datasets, training
on them, and averaging their predictions on x

" MSE(z) = o + E[(h*(z) — hg(x))?]
= 0+ (*(2) — hasg(@))? + El(havg — hs(@))”

= 0 +(W(®) — hay(2))’ +var(hs(z))

N
. A 3
A bi as2 = varlance

unavoidable

Sample complexity bounds

208

Useful lemmas

® Lemma. (The union bound). Let A;, As, ..., Ax be k different events (that
may not be independent). Then

P(AiU---UAg) < P(A) +...4+ P(Ag).

" Lemma. (Hoeffding inequality) Let Zi,...,Z, be n independent and iden-
tically distributed (iid) random variables drawn from a Bernoulli(¢) distri-
bution. Le., P(Z;=1)=¢,and P(Z; =0)=1—¢. Let ¢ = (1/n) > ._, Z;
be the mean of these random variables, and let any v > 0 be fixed. Then

P(|¢ — @| >) < 2exp(—27°n)

Problem setting

To simplify, consider the classification problem with y € {0,1}
Training set § = {(xi,yi); i =1,2,...,n}, drawn iid from D

For hypothesis h, define training error (empirical risk/error)
1 & | .
A(h) — (%) (%)
() = Sk #4°)

Define the generalization error e(h) = Py, ,~p(h(z) # y)

One of PAC assumption: training
nd testing set are from the same D

Problem setting (cont’d)

Consider the linear classification hg(x) = 1{0"x = 0}

Objective: minimize the training error

A e empirical risk
6 = arg min E(hg)

h = hy

In learning theory, it will be useful to abstract away from the
specific parameterization of hypotheses

Define the hypothesis class H, for linear classification
H = {h@ : h@(.’]?) = 1{(9T.73 > O},H = Rd_H}

Problem setting (cont’d)

* ERM becomes finding A = arg Ihnl?il E(h)
S

" For simplicity, first consider the finite hypothesis set

H={hy,...)

= Now, show the guarantee for the generalization error of h
» 1. Vh, €(h) is a reliable estimate of (h)

= 2. h guarantees good generalization error

Guarantee for a fixed hypothesis function

Fix any hypothesis function h; € H
Define Z; = 1{hi(xj) = yj}

The training error is

The empirical mean of n random variables with expectation £(h;)
Applying Hoeffding inequality,
P(le(hi) — é(hs)] >) < 2exp(—2y7n)

Guarantee for any hypothesis function

s P(AheH|e(h) —é(h)|>v) = P(A U---U A

k
<y
i=1
k
< ZQeXp 2y
i=1
= 2kexp(—27°n)

" ThUS P(‘E'h < H|€(hz) — é(hz” > ’)/)

Corollaries

" How large must n be before we can guarantee that with
probability at least 1 — 0, training error will be within y of
generalization error? (sample complexity)

" What is the distance between the training error and
generalization error with training set size n and confidence 67?

Guarantee for the output hypothesis function

A

Recall h = arg mingey (h)

Define the best hypothesisis h* = arg mingecy £(h)

A

Then €(h) é(il) + 7y
E(h*) +
e(h*) + 2

If uniform convergence occurs, then the generalization error of h
Is at most 2y worse than the best possible hypothesis in H'!

IA AN

Theorem of generalization error

= Theorem. Let |H| =k, and let any n,d be fixed. Then with probability at
least 1 — d, we have that

e(h) < (%17216 > + 2\/— log —

= Explanation of bias/variance

= |f we switch to a larger function class H' 2 H
" The first term decreases: lower bias
* The second term increases as k increases: higher variance

Corollary of sample complexity

= Corollary. Let [#| = k, and let any 6,7 be fixed. Then for e(h) <
mingey €(h) 4+ 279 to hold with probability at least 1 — 6, it suffices that

1102k
n g5

22

1 k
- 0(gmrg)

Extension to infinite H : Intuition

Usually the hypothesis set is infinite

" For example, the linear function set contains a infinite number of

parameters

Suppose H is parameterized by d real numbers

The computer uses 64 bits to represent a floating point number

H contains 2644 different hypotheses

Existing results show that with fixed y, 0

n > 0(71—210g

264d
)

)= 0 (ss1)

07,5 (d)

VC dimension

= Shatter

Given a set S = {2z, ...,)} (no relation to the training set) of points
) € X, we say that H shatters S if H can realize any labeling on S.
Le., if for any set of labels {yV),...,yP)} there exists some h € H so that
h(z®) =y@ for alli =1,...D.

= \/C dimension

Given a hypothesis class H, we then define its Vapnik-Chervonenkis
dimension, written VC(H), to be the size of the largest set that is shattered
by H. (If H can shatter arbitrarily large sets, then VC(H) = o0.)

VC dimension: illustration

= Can the set H of linear classifiers in two dimensions shatter the
set below?

" For any labeling, H can correctly classify

VC dimension: illustration (cont’d)

" |n order to prove that VC(H) is at least D, we need to show only
that there’s at least one set of size D that H can shatter (not
every set of size D)

Convergence results

" Theorem. Let H be given, and let D = VC(#). Then with probability at
least 1 — 9, we have that for all h € H,

(h) — |<O<\/—logg —log(15>

Thus, with probability at least 1 — 9, we also have that:
A D n 1 1
<e(h* —log — + —log = | .
e(h) <e(h*)+ O (\/n logD —I-nlog(S)

= Corollary. For |e(h) — £(h)| < 7 to hold for all h € H (and hence e(h) <
e(h*) 4+ 27) with probability at least 1 — 9, it suffices that n = O, s(D).

Usually the VC
dimension is roughly
linear in the number of
parameters

STA303: Artificial Intelligence

Deep Reinforcement Learning

Fang Kong

https://fangkongx.github.io/

Part of slide credits: Weinan Zhang

https://fangkongx.github.io/

Outline

" Deep RL —Value methods
" Deep RL — Policy methods

Value methods: DQN

" Deep Q-Network (DQN)

= Uses a deep neural network to approximate Q(s,a)
= —> Replaces the Q-table with a parameterized function for scalability

" The network takes state s as input, outputs Q-values for all actions a simultaneously

Convolution Convolution Fully connected Fully connected
w A s w

of | B /m

ot | /s L\
B-oeom -0 :o:

o | O

of] | E \m

¢

AR vy]
[BX BN BN BN BY BX B ~ €« ¥ £
HEBEEERERACRAREAR

Volodymyr Mnih, Koray Kavukcuoglu, David Silver et al. Playing Atari with Deep Reinforcement Learning. NIPS 2013 workshop.

DQN (cont.)

" |Intuition: Use a deep neural network to approximate Q(s,a)

" [nstability arises in the learning process

= Samples {(s¢, a¢, S¢+1, 7¢) } are collected sequentially and do not satisfy the i.i.d.
assumption

" Frequent updates of Q(s,a) cause instability

" Solutions: Experience replay

= Store transitions e; = (S, s, S¢4+1,73) in a replay buffer D
Sample uniformly from D to reduce sample correlation

* Dual network architecture: Use an evaluation network and a target
network for improved stability

“Human-Level Control Through Deep Reinforcement Learning”, Mnih, Kavukcuoglu, Silver et al. (2015)

Target network

* Target network Qg-(s, a)

* Maintains a copy of the Q-network with older parameters 6~

 Parameters 8~ are updated periodically (every C steps) to match the evaluation

network

= Loss Function (at iteration i)

2

Li(6) = Esqapsesarope-n |3 @t + 7 max Qo (ses1,@") — Qg (5, a)Y?]

“Human-Level Control Through Deep Reinforcement Learning”, Mnih, Kavuke

=+

—

p

=

=

oglu, Silver et al. (201

06

DQN training procedure

" Collect transitions using an e-greedy exploration policy

= Store {(s¢, ¢, S¢4+1,7+) } into the replay buffer
= Sample a minibatch of k transitions from the buffer
" Update networks:

= Compute the target using the sampled transitions
* Update the evaluation network Qg

* Every C steps, synchronize the target network Qg- with the evaluation
network

“Human-Level Control Through Deep Reinforcement Learning”, Mnih, Kavukcuoglu, Silver et al. (2015)

Overestimation in Q-Learning

= Q-function overestimation
* The target value is computed as: Y¢ =1 TV rr:la,lx Qo (s¢+1,a’)

" The max operator leads to increasingly larger Q-values, potentially
exceeding the true value

= Cause of overestimation
{9251(Qo' (St+1,a’) = Qgr(S¢4q,arg HE}X Qo' (St+1,a"))

" The chosen action might be overestimated due to Q-function error

Degree of overestimation in DQN

= Overestimation increases with the number of candidate actions

e Bl max, Q(s,a) — Vi(s)
1.0 mm Q(s,argmax,Q(s,a)) — Vi(s)
2. %

error

0.0 HI.

SEE G N =
<,
g

number of actions

" A separately trained Q’-function is used as a reference

Double DQN

" Uses two separate networks for action selection and value
estimation, respectively.

DQN y: =1 +vQo(St+1,ar8 max Qo(St+1,a'))

“~

Double DQN Y: =1t + V¥

(5t+1,2rg max Qp (5e41,a")

“Double Reinforcement Learning with Double Q-Learning”, van Hasselt et al. (2016)

Dueling DQN

= Assume the action-value function follows a distribution:

Q(s,a) ~N(u,0)

= Then: V(s) =E[Q(s,a)] = pu Q(s,a) = u+|e(s,a)

= How do we describe £(s,a)?

£(s,a) =0Q(s,a) —V(s)

" This term is also known as the Advantage function

“Dueling Network Architectures for Deep Reinforcement Learning”, Wang et al. (2016)

= Advantage function A7(s

Q(s,a;0,a,p)

Q(s,a;0,a,p)

=V(s;0,B) +

Dueling DQN (cont.)

Q™ (s,

,a) = Q"(s,a) — V(s)

a) = E[R;|s; = s,a; = a,]

VT (s) = Eq-n(s) Q" (s, a)]

= Different forms of advantage aggregation

(A(s,a;0,a) — rr}szﬁﬂA(S a’;0,a))

=V(s;0,p) +

(A(s,a;0,a) — |A|z A(s,a’;0,a))

Deep RL — Policy-based methods

235

Review: The policy gradient theorem

" The policy gradient theorem generalizes the derivation of
likelihood ratios to the multi-step MDP setting.

" |t replaces the immediate reward 7; with the expected long-term
return Q™ (s, a).

O _

a0

g

logmg (als

a0

Q"0 (s,a)

Policy Gradient in a Single-Step MDP

= Consider a simple single-step Markov Decision Process (MDP)

® The initial state is drawn from a distribution: s ~ d(s)

= The process terminates after one action, yielding a reward 75,

= Expected Value of the Policy

J(©) = Eqy 1] Zd(s)zne(cns)r

Likelihood Ratio Trick

6](9) Zd()Zaﬂe(als) -

= Use the identity: ~ 97a(als) — np(als) amg(als)
a6 (|s) o6
31 g ([s)

= mg(als)

= The gradient of the expected return can be written as:

J(©) = Egylr] = Z"’()Z 0(@lsYia
WSy,

Policy network gradient

" For stochastic policies, the probability of selecting an action is

typically modeled using a softmax function:
ef@(sla)
Za, efG(S'a,)

mg(als) =

" fo(s,a)isascore function (e.g., logits) for the state-action pair
* Parameterized by 0, often realized via a neural network

" Gradient of the log-form

dlogmg(als) _ dfe (s, a) Z ofo s,a’ afg(s a'")
90 06 Z ,efe(S a’)

_Of(sa) o 0fo(s, a’)
~ 99 erme@lD | g

Policy network gradient (cont.)

" Gradient of the log-form

dlogmg(als) B Afe(s,a) E dfg(s,a’)
90 EL a'~mo(@'ls) | g
" Gradient of the policy network
] 1. .Rollout
a]a(gg) = lEne _aloggge(alS) Q"0 (s, Cl)] * Tranetwo::

(0fg(s,a) 0fo(5,a)|\ on
=]E7t9 (669 _]Ea'~n9(a’|s)[669])Q G(S,a)]

) \
1 1

Back propagation Back propagation

Comparison: DQN v.s. Policy gradient

= Q-Learning:
" Learns a Q-value function Qg (s, a) parameterized by 0

= Objective: Minimize the TD error
1
J(6) = Ey |5 (e +¥ max Qg (s041,@) = Qo (50,20’

dj(6)
6 « O—QW

aQG (Sr Cl)

= 0+ aE, [(rt +y max Qpr(se41,0) — Qo (5 @)) —5,
a

Comparison: DQN v.s. Policy gradient

= Q-Learning:
" Learns a Q-value function Qg (s, a) parameterized by 0

= QObjective: Minimize the TD error
" Policy gradient
" Learns a policy mg(a | s) directly, parameterized by 6

= Objective: Maximize the expected return directly
max J(0) = Ep,[Q7(s,)]

9] () dlogry (als) -
— e
Y 0+ aE,, PY: Q"9(s,a)

0 <0+«

Limitations of policy gradient methods

" Learning rate (step size) selection is challenging in policy gradient
algorithms

= Since the data distribution changes as the policy updates, a previously
good learning rate may become ineffective.

= A poor choice of step size can significantly degrade performance:

" Too large - policy diverges or collapses
" Too small = slow convergence or stagnation @

FTRER
IR

Trust Region Policy Optimization (TRPO)

" Two forms of the optimization objective
= Form 1: Trajectory-based objective J(8) = Erepyr)[Xe v 7 (st ap)]

= Form 2: State-value-based objective J(8) = Eg ~p,(se) [V (S0)]

Optimization gap of the objective function

.) .](0) — IET~p9(‘c) [Ztytr(str at)]
" New policy 8" and old policy 6 J(8) = Eg -y sy [V (50)]

](0,) _](9) =](0’) - IEso~p(so) [_VTH (SO?I

= IET~p91(T) [2 ytATO(sq, a,)]
i t=0 *

Sampling
inconvenience A™0 (s, a) = QT0(s¢, ap) —V™ (s¢)

Importance sampling

A™0 (s;, a;)
70— 1(6) — Q70 (s,, a) V7 (s,)
= 1:~P 1(T) [2 ytAne (St at)]

= z IESt~p9’ (St) []Eat~7t9/(at |St) [ytAne (St' a’t)]]
t

- E E [77"9’(at|5t) tAms (s, a,)]]
st~Pg! (st) L a~mg(At|St) g (atlst))4 t) At
t é h

Do, approximation Importance sampling

TRPO Policy Constraint

= Use KL divergence to constrain policy update magnitude:

mgr(aclse) ,
o (ar|se) yrATO (s, ay)]]

such that Eg, ., (s)[Dxe (”9’ (aclse) Il o (atlst))] S€

' < arg Hngz Esi~po(se) [IEat~7T9(at|St)[
t

Proximal Policy Optimization (PPO)

" Clipped Surrogate Objective

Tlg (at|3t) A

conservative —_ "
A | = Eg [rt (9>At]
g 14 (atlse)

policy iteration

LCPI (0) — Et [

LCLP(9) = E,|min(r,(6)A,, dlip(r:(8),1 —€,1 + €) 4,)]

A<O
JCLIP A>0

Construct the lower bound: LCLIP(9) < LCPI(Q)

_\ Equivalent at r=1: LELIP(9) = [CPI(g)

1L i
0 1 1+¢ LCLIP

STA303: Artificial Intelligence

Introduction to Multi-armed Bandits

Fang Kong

https://fangkongx.github.io/

https://fangkongx.github.io/

Multi-armed bandits (MAB)

H1 Hz e Hk

- f777°%F

° A p|ayer and K armsﬁ ltems, products, movies, companies, ... }
e Fach arm a has an unknown reward distribution P] with unknown

mean U;
,Ll] <’L CTR, preference value, ... }

e Ineachroundt = 1,2, ...:
* The agent selectsanarm A; € {1,2, ..., K}
* Observes reward X;~Py,

Click information, satisfaction, ... }
248

Objective

* Maximize the expected cumulative reward in T rounds
T T
t=1 t=1

* Minimize the regret in T rounds
* Denote j* € argmax; u; asthe bestarm

T
Reg(T) =T+ —E|) ua]

Explore-then-commit (ETC)

* There are K = 2 arms (choices/plans/...)

* Suppose

* Uy > U
* A=y — Uy [A/B testing]

e

e Explore-then-commit (ETC) algorithm

* Select each arm h times b rounds
* Find the empirically best arm A for a,
* Choose A; = A for all remaining rounds

T — 2h rounds
for the better
performed one

A soft version: e-greedy

* For each round t
& € (0,1)
* With probability &;, exploration (uniformly random select arms)

* With probability 1 — &;, exploitation (select the best performed arm
so far)

* When & = min {1, m%}’ Reg(T) = 0 (loi T)

Demo: https://cse442-17f.github.io/LinUCB/

https://cse442-17f.github.io/LinUCB/

Upper confidence bound (UCB)

* With high probability = 1 — § 8y Hoeffding’s inequality |
A logl/6 log1/6 °
A [A i T A 7 o e
/ \]\ a\ J
/_ - Arm1 Arm2
Sample mean Number of selections of q;

* Optimism: Believe arms have higher rewards, encourage exploration
* The UCB value represents the reward estimates

Upper confidence bound (UCB)]

* For each round t, select the arm

\
~ log1/6
A(t) € argmax e A + >

IREICH
Exploitation Exploration 252

