
STA303: Artificial Intelligence

Fang Kong

https://fangkongx.github.io/Teaching/STA303/Fall2025/index.html

Final Review

https://fangkongx.github.io/Teaching/STA303/Fall2025/index.html

This course: Designing rational agents

§ An agent is an entity that perceives and acts.
§ A rational agent selects actions that maximize

its (expected) utility.
§ Characteristics of the percepts, environment,

and action space dictate techniques for
selecting rational actions

§ This course is about:
§ General AI techniques for a variety of problem

types
§ Learning to recognize when and how a new

problem can be solved with an existing technique

Ag
en

t

?

Sensors

Actuators

Environm
ent

Percepts

Actions

2

Course Topics

Search &
Planning

Reinforcement
Learning

Core Components of Rational Agents:

Supervised
Learning

Probability &
Inference

3

STA303: Artificial Intelligence

Slide credits: ai.berkeley.edu

Search

Fang Kong

https://fangkongx.github.io/Teaching/STA303/Fall2025/index.html

https://fangkongx.github.io/Teaching/STA303/Fall2025/index.html

Search Problems

§ A search problem consists of:

§ A state space

§ A successor function
(with actions, costs)

§ A start state and a goal test

§ A solution is a sequence of actions (a plan) which
transforms the start state to a goal state

“N”, 1.0

“E”, 1.0

What’s in a State Space?

§ Problem: Pathing
§ States: (x,y) location
§ Actions: NSEW
§ Successor: update location

only
§ Goal test: is (x,y)=END

§ Problem: Eat-All-Dots
§ States: {(x,y), dot booleans}
§ Actions: NSEW
§ Successor: update location

and possibly a dot boolean
§ Goal test: dots all false

The world state includes every last detail of the environment

A search state keeps only the details needed for planning (abstraction)

State Space Sizes?

§ World state:
§ Agent positions: 120
§ Food count: 30
§ Ghost positions: 12
§ Agent facing: NSEW

§ How many
§ World states?

120x(230)x(122)x4
§ States for pathing?

120
§ States for eat-all-dots?

120x(230)

State Space Graphs

§ State space graph: A mathematical
representation of a search problem
§ Nodes are (abstracted) world configurations
§ Arcs represent successors (action results)
§ The goal test is a set of goal nodes (maybe only one)

§ In a state space graph, each state occurs only
once!

§ We can rarely build this full graph in memory
(it’s too big), but it’s a useful idea

Search Trees

§ A search tree:
§ A “what if” tree of plans and their outcomes
§ The start state is the root node
§ Children correspond to successors
§ Nodes show states, but correspond to PLANS that achieve those states
§ For most problems, we can never actually build the whole tree

“E”, 1.0“N”, 1.0

This is now / start

Possible futures

State Space Graphs vs. Search Trees

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G
a

S

G

d

b

p q

c

e

h

a

f

r

We construct both
on demand – and
we construct as
little as possible.

Each NODE in the
search tree is an

entire PATH in the
state space graph.

Search TreeState Space Graph

Tree Search

General Tree Search

§ Important ideas:
§ Fringe
§ Expansion
§ Exploration strategy

§ Main question: which fringe nodes to explore?

Search Algorithm Properties

§ Complete: Guaranteed to find a solution if one exists?
§ Optimal: Guaranteed to find the least cost path?
§ Time complexity?
§ Space complexity?

§ Cartoon of search tree:
§ b is the branching factor
§ m is the maximum depth
§ solutions at various depths

§ Number of nodes in entire tree?
§ 1 + b + b2 + …. bm = O(bm)

…
b 1 node

b nodes

b2 nodes

bm nodes

m tiers

Depth-First Search

Depth-First Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p q

c

e

h

a

f

rqp
h

fd

b
a

c

e

r

Strategy: expand a
deepest node first

Implementation:
Fringe is a LIFO stack

Depth-First Search (DFS) Properties

…
b 1 node

b nodes

b2 nodes

bm nodes

m tiers

§ What nodes DFS expand?
§ Some left prefix of the tree.
§ Could process the whole tree!
§ If m is finite, takes time O(bm)

§ How much space does the fringe take?
§ Only has siblings on path to root, so O(bm)

§ Is it complete?
§ m could be infinite, so only if we prevent

that

§ Is it optimal?
§ No, it finds the “leftmost” solution,

regardless of depth or cost

Breadth-First Search

Breadth-First Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p q

c
e

h

a

f

r

Search

Tiers

Strategy: expand a
shallowest node first

Implementation: Fringe
is a FIFO queue

Breadth-First Search (BFS) Properties

§ What nodes does BFS expand?
§ Processes all nodes above shallowest solution
§ Let depth of shallowest solution be s
§ Search takes time O(bs)

§ How much space does the fringe take?
§ Has roughly the last tier, so O(bs)

§ Is it complete?
§ s must be finite if a solution exists, so yes!

§ Is it optimal?
§ Only if costs are all 1 (more on costs later)

…
b 1 node

b nodes

b2 nodes

bm nodes

s tiers

bs nodes

Iterative Deepening

…
b

§ Idea: get DFS’s space advantage with BFS’s time
/ shallow-solution advantages
§ Run a DFS with depth limit 1. If no solution…
§ Run a DFS with depth limit 2. If no solution…
§ Run a DFS with depth limit 3. …..

§ Isn’t that wastefully redundant?
§ Generally most work happens in the lowest level

searched, so not so bad!

Cost-Sensitive Search

BFS finds the shortest path in terms of number of actions.
It does not find the least-cost path. We will now cover
a similar algorithm which does find the least-cost path.

START

GOAL

d

b

p
q

c

e

h

a

f

r

2

9 2

81

8

2

3

2

4

4

15

1

3
2

2

Uniform Cost Search

Uniform Cost Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

Strategy: expand a
cheapest node first:

Fringe is a priority queue
(priority: cumulative cost) S

G

d

b

p q

c

e

h

a

f

r

3 9 1

164 11
5

713

8

1011

17 11

0

6

3 9

1

1

2

8

8 2

15

1

2

Cost
contours

2

…

Uniform Cost Search (UCS) Properties

§ What nodes does UCS expand?
§ Processes all nodes with cost less than cheapest solution!
§ If that solution costs C* and arcs cost at least e , then the

“effective depth” is roughly C*/e
§ Takes time O(bC*/e) (exponential in effective depth)

§ How much space does the fringe take?
§ Has roughly the last tier, so O(bC*/e)

§ Is it complete?
§ Assuming best solution has a finite cost and minimum arc cost

is positive, yes!

§ Is it optimal?
§ Yes! (Proof next lecture via A*)

b

C*/e “tiers”
c £ 3

c £ 2
c £ 1

Uniform Cost Issues

§ Remember: UCS explores increasing cost
contours

§ The good: UCS is complete and optimal!

§ The bad:
§ Explores options in every “direction”
§ No information about goal location

§ We’ll fix that soon!

Start Goal

…

c £ 3
c £ 2

c £ 1

[Demo: empty grid UCS (L2D5)]
[Demo: maze with deep/shallow
water DFS/BFS/UCS (L2D7)]

The One Queue

§ All these search algorithms are the
same except for fringe strategies
§ Conceptually, all fringes are priority

queues (i.e. collections of nodes with
attached priorities)

§ Practically, for DFS and BFS, you can
avoid using an actual priority queue, by
using stacks and queues

§ Can even code one implementation
that takes a variable queuing object

Informed Search

Search Heuristics
§ A heuristic is:

§ A function that estimates how close a state is to a goal
§ Designed for a particular search problem
§ Examples: Manhattan distance, Euclidean distance for

pathing

10

5
11.2

Greedy Search

Greedy Search

§ Expand the node that seems closest…

§ What can go wrong?

Greedy Search

§ Strategy: expand a node that you think is
closest to a goal state
§ Heuristic: estimate of distance to nearest goal for

each state

§ A common case:
§ Best-first takes you straight to the (wrong) goal

§ Worst-case: like a badly-guided DFS

…
b

…
b

[Demo: contours greedy empty (L3D1)]
[Demo: contours greedy pacman small maze (L3D4)]

A* Search

Combining UCS and Greedy

§ Uniform-cost orders by path cost, or backward cost g(n)
§ Greedy orders by goal proximity, or forward cost h(n)

§ A* Search orders by the sum: f(n) = g(n) + h(n)

S a d

b

G
h=5

h=6

h=2

1

8

1
1

2

h=6 h=0

c

h=7

3

e h=1
1

Example: Teg Grenager

S

a

b ed

G

f=0+6

f = 1+5

f = 2+6 f = 4+2

f = 6+0

f = 9+1

When should A* terminate?

§ Should we stop when we enqueue a goal?

§ No: only stop when we dequeue a goal

S

B

A

G

2

3

2

2
h = 1

h = 2

h = 0h = 3

S

A

G

B

G

f=0+3

f = 2+2 f = 2+1

f = 4+0 f = 5+0

Is A* Optimal?

§ What went wrong?
§ Actual bad goal cost < estimated good goal cost
§ We need estimates to be less than actual costs!

A

GS

1 3
h = 6

h = 0

5

h = 7

S

A G

f=0+7

f = 1+6 f = 5+0

Idea: Admissibility

Inadmissible (pessimistic) heuristics break
optimality by trapping good plans on the fringe

Admissible (optimistic) heuristics slow down
bad plans but never outweigh true costs

Admissible Heuristics

§ A heuristic h is admissible (optimistic) if:

where is the true cost to a nearest goal

§ Examples:

§ Coming up with admissible heuristics is most of what’s involved
in using A* in practice.

4
15

Optimality of A* Tree Search

Optimality of A* Tree Search

Assume:
§ A is an optimal goal node
§ B is a suboptimal goal node
§ h is admissible

Claim:

§ A will exit the fringe before B

…

Optimality of A* Tree Search: Blocking

Proof:
§ Imagine B is on the fringe
§ Some ancestor n of A is on the

fringe, too (maybe A!)
§ Claim: n will be expanded before B

1. f(n) is less or equal to f(A)

…

Optimality of A* Tree Search: Blocking

1. f(n) is less than or equal to f(A)
§ Definition of f-cost says:

f(n) = g(n) + h(n) = (path cost to n) + (est. cost of n to A)
f(A) = g(A) + h(A) = (path cost to A) + (est. cost of A to A)

§ The admissible heuristic must underestimate the true cost
h(A) = (est. cost of A to A) = 0

§ So now, we have to compare:
f(n) = g(n) + h(n) = (path cost to n) + (est. cost of n to A)
f(A) = g(A) = (path cost to A)

§ h(n) must be an underestimate of the true cost from n to A
(path cost to n) + (est. cost of n to A) ≤ (path cost to A)
g(n) + h(n) ≤ g(A)
f(n) ≤ f(A)

…

Optimality of A* Tree Search: Blocking

Proof:
§ Imagine B is on the fringe
§ Some ancestor n of A is on the

fringe, too (maybe A!)
§ Claim: n will be expanded before B

1. f(n) is less or equal to f(A)
2. f(A) is less than f(B)

…

Optimality of A* Tree Search: Blocking

2. f(A) is less than f(B)
§ We know that:

f(A) = g(A) + h(A) = (path cost to A) + (est. cost of A to A)
f(B) = g(B) + h(B) = (path cost to B) + (est. cost of B to B)

§ The heuristic must underestimate the true cost:
h(A) = h(B) = 0

§ So now, we have to compare:
f(A) = g(A) = (path cost to A)
f(B) = g(B) = (path cost to B)

§ We assumed that B is suboptimal! So
(path cost to A) < (path cost to B)
g(A) < g(B)
f(A) < f(B)

…

Optimality of A* Tree Search: Blocking

Proof:
§ Imagine B is on the fringe
§ Some ancestor n of A is on the

fringe, too (maybe A!)
§ Claim: n will be expanded before B

1. f(n) is less or equal to f(A)
2. f(A) is less than f(B)
3. n expands before B

§ All ancestors of A expand before B
§ A expands before B
§ A* search is optimal

…

Creating Heuristics

Creating Admissible Heuristics

§ Most of the work in solving hard search problems optimally is in coming up
with admissible heuristics

§ Often, admissible heuristics are solutions to relaxed problems, where new
actions are available

15
366

Graph Search

§ Failure to detect repeated states can cause exponentially more work.

Search TreeState Graph

Tree Search: Extra Work!

Graph Search

§ Idea: never expand a state twice

§ How to implement:
§ Tree search + set of expanded states (“closed set”)
§ Expand the search tree node-by-node, but…
§ Before expanding a node, check to make sure its state has never been

expanded before
§ If not new, skip it, if new add to closed set

§ Important: store the closed set as a set, not a list

§ Can graph search wreck completeness? Why/why not?

§ How about optimality?

Graph Search Pseudo-Code

A* Graph Search Gone Wrong?

S

A

B

C

G

1

1

1

2
3

h=2

h=1

h=4

h=1

h=0

S (0+2)

SA (1+4) SB (1+1)

SBC (3+1) SBS (2+2)

State space graph Search tree Closed set
{ }S B

A* Graph Search Gone Wrong?

S

A

B

C

G

1

1

1

2
3

h=2

h=1

h=4

h=1

h=0

S (0+2)

SA (1+4) SB (1+1)

SBC (3+1) SBS (2+2)

State space graph Search tree Closed set
{ }S B

SBCG (6+0) SBCB (5+1)SBCA (4+4)

A* Graph Search Gone Wrong?

S

A

B

C

G

1

1

1

2
3

h=2

h=1

h=4

h=1

h=0

S (0+2)

SA (1+4) SB (1+1)

SBC (3+1) SBS (2+2)

State space graph Search tree Closed set
{ }S B C

SBCG (6+0) SBCB (5+1)

SAC (2+1)

SBCA (4+4)

A

Consistency of Heuristics

§ Main idea: estimated heuristic costs ≤ actual costs

§ Admissibility: heuristic cost ≤ actual cost to goal

h(A) ≤ actual cost from A to G

§ Consistency: heuristic “arc” cost ≤ actual cost for each arc

h(A) – h(C) ≤ cost(A to C)

§ Consequences of consistency:

§ The f value along a path never decreases

h(A) ≤ cost(A to C) + h(C)

§ A* graph search is optimal

3

A

C

G

h=4 h=1
1

h=2

Optimality

§ Tree search:
§ A* is optimal if heuristic is admissible
§ UCS is a special case (h = 0)

§ Graph search:
§ A* optimal if heuristic is consistent
§ UCS optimal (h = 0 is consistent)

§ Consistency implies admissibility

§ In general, most natural admissible heuristics
tend to be consistent, especially if from
relaxed problems

A*: Summary

§ A* uses both backward costs and (estimates of) forward costs

§ A* is optimal with admissible / consistent heuristics

§ Heuristic design is key: often use relaxed problems

STA303: Artificial Intelligence

Fang Kong

https://fangkongx.github.io/

Part of slide credits: ai.berkeley.edu

Games

https://fangkongx.github.io/

§ Game = task environment with > 1 agent
§ Axes:

§ Deterministic or stochastic?
§ Perfect information (fully observable)?
§ Two, three, or more players?
§ Teams or individuals?
§ Turn-taking or simultaneous?
§ Zero sum?

§ Want algorithms for calculating a strategy (policy) which recommends a
move from every possible state

Types of Games

Deterministic Games

§ Many possible formalizations, one is:
§ States: S (start at s0)
§ Players: P={1…N} (usually take turns)
§ Actions: A (may depend on player/state)
§ Transition function: S x A → S
§ Terminal test: S → {true, false}
§ Terminal utilities: S x P → R

§ Solution for a player is a policy: S → A

Zero-Sum Games

§ Zero-Sum Games
§ Agents have opposite utilities
§ Pure competition:

§ One maximizes, the other minimizes

§ General-Sum Games
§ Agents have independent utilities
§ Cooperation, indifference, competition,

shifting alliances, and more are all possible

§ Team Games
§ Common payoff for all team members

Minimax Values

+8-10-5-8

States Under Agent’s Control:

Terminal States:

States Under Opponent’s Control:

Adversarial Search (Minimax)

§ Deterministic, zero-sum games:
§ Tic-tac-toe, chess, checkers
§ One player maximizes result
§ The other minimizes result

§ Minimax search:
§ A state-space search tree
§ Players alternate turns
§ Compute each node’s minimax value:

the best achievable utility against a
rational (optimal) adversary

8 2 5 6

max

min2 5

5

Terminal values:
part of the game

Minimax values:
computed recursively

Minimax Implementation

def min-value(state):
initialize v = +∞
for each successor of state:

v = min(v, max-value(successor))
return v

def max-value(state):
initialize v = -∞
for each successor of state:

v = max(v, min-value(successor))
return v

Minimax Implementation (Dispatch)

def value(state):
if the state is a terminal state: return the state’s utility
if the next agent is MAX: return max-value(state)
if the next agent is MIN: return min-value(state)

def min-value(state):
initialize v = +∞
for each successor of state:

v = min(v, value(successor))
return v

def max-value(state):
initialize v = -∞
for each successor of state:

v = max(v, value(successor))
return v

Multi-Agent Utilities

§ What if the game is not zero-sum, or has multiple players?

§ Generalization of minimax:
§ Terminals have utility tuples
§ Node values are also utility tuples
§ Each player maximizes its own component
§ Can give rise to cooperation and

competition dynamically…

1,6,6 7,1,2 6,1,2 7,2,1 5,1,7 1,5,2 7,7,1 5,2,5

Minimax Efficiency

§ How efficient is minimax?
§ Just like (exhaustive) DFS
§ Time: O(bm)
§ Space: O(bm)

§ Example: For chess, b » 35, m » 100
§ Exact solution is completely infeasible
§ But, do we need to explore the whole

tree?

Game Tree Pruning

Minimax Pruning

12 8 5 23 2 14

✂
The order of generation matters:
more pruning is possible if good moves come first

Alpha-Beta Pruning

§ General case (pruning children of MIN node)
§ We’re computing the MIN-VALUE at some node n
§ We’re looping over n’s children

§ n’s estimate of the childrens’ min is dropping
§ Who cares about n’s value? MAX
§ Let α be the best value that MAX can get so far at any

choice point along the current path from the root

§ If n becomes worse than α, MAX will avoid it, so we can
prune n’s other children (it’s already bad enough that it
won’t be played)

§ Pruning children of MAX node is symmetric
§ Let β be the best value that MIN can get so far at any

choice point along the current path from the root

MAX

MIN

MAX

MIN

α

n

Alpha-Beta Implementation

def min-value(state , α, β):
initialize v = +∞
for each successor of state:

v = min(v, value(successor, α, β))
if v ≤ α return v
β = min(β, v)

return v

def max-value(state, α, β):
initialize v = -∞
for each successor of state:

v = max(v, value(successor, α, β))
if v ≥ β return v
α = max(α, v)

return v

α: MAX’s best option on path to root
β: MIN’s best option on path to root

Alpha-Beta Quiz

Alpha-Beta Pruning Properties

§ This pruning has no effect on minimax value computed for the root!

§ Values of intermediate nodes might be wrong
§ Important: children of the root may have the wrong value
§ So the most naïve version won’t let you do acion selecion

§ Good child ordering improves effecuveness of pruning

§ With “perfect ordering”:
§ Time complexity drops to O(bm/2)
§ Doubles solvable depth!
§ Full search of, e.g. chess, is sill hopeless…

10 10 0

max

min

Resource Limits

§ Problem: In realistic games, cannot search to leaves!

§ Solution: Depth-limited search
§ Instead, search only to a limited depth in the tree
§ Replace terminal utilities with an evaluation function for

non-terminal positions

§ Example:
§ Suppose we have 100 seconds, can explore 10K nodes / sec
§ So can check 1M nodes per move
§ a-b reaches about depth 8 – decent chess program

§ Guarantee of optimal play is gone

§ More plies makes a BIG difference

§ Use iterative deepening for an anytime algorithm
? ? ? ?

-1 -2 4 9

4

min

max

-2 4

Evaluation Functions
§ Evaluation functions score non-terminals in depth-limited search

§ Ideal function: returns the actual minimax value of the position
§ In practice: typically weighted linear sum of features:

§ E.g. f1(s) = (num white queens – num black queens), etc.
§ Or a more complex nonlinear function (e.g., NN) trained by self-play RL

Uncertain Outcomes

ExpecYmax Search

§ Why wouldn’t we know what the result of an action will be?
§ Explicit randomness: rolling dice
§ Unpredictable opponents: the ghosts respond randomly
§ Actions can fail: when moving a robot, wheels might slip

§ Values should now reflect average-case (expectimax)
outcomes, not worst-case (minimax) outcomes

§ Expectimax search: compute the average score under
optimal play
§ Max nodes as in minimax search
§ Chance nodes are like min nodes but the outcome is uncertain
§ Calculate their expected utilities
§ I.e. take weighted average (expectation) of children

§ Later, we’ll learn how to formalize the underlying uncertain-
result problems as Markov Decision Processes

10 4 5 7

max

chance

10 10 9 100

[Demo: min vs exp (L7D1,2)]

Expectimax Pseudocode

def value(state):
if the state is a terminal state: return the state’s utility
if the next agent is MAX: return max-value(state)
if the next agent is EXP: return exp-value(state)

def exp-value(state):
initialize v = 0
for each successor of state:

p = probability(successor)
v += p * value(successor)

return v

def max-value(state):
iniualize v = -∞
for each successor of state:

v = max(v, value(successor))
return v

Expectimax Pseudocode

def exp-value(state):
initialize v = 0
for each successor of state:

p = probability(successor)
v += p * value(successor)

return v 5 78 24 -12

1/2
1/3

1/6

v = (1/2) (8) + (1/3) (24) + (1/6) (-12) = 10

Expectimax Pruning?

12 93 2

Depth-Limited Expectimax

…

…

492 362 …

400 300
Estimate of true

expectimax value
(which would

require a lot of
work to compute)

Markov Decision Processes

Slide credits: ai.berkeley.edu

STA303: Artificial Intelligence

Fang Kong

https://fangkongx.github.io/

https://fangkongx.github.io/

Markov Decision Processes

§ An MDP is defined by:
§ A set of states s Î S
§ A set of acions a Î A
§ A transiion funcion T(s, a, s’)

§ Probability that a from s leads to s’, i.e., P(s’| s, a)
§ Also called the model or the dynamics

§ A reward funcion R(s, a, s’)
§ Some\mes just R(s) or R(s’)

§ A start state
§ Maybe a terminal state

[Demo – gridworld manual intro (L8D1)]

What is Markov about MDPs?

§ “Markov” generally means that given the present state, the
future and the past are independent

§ For Markov decision processes, “Markov” means action
outcomes depend only on the current state

§ This is just like search, where the successor function could only
depend on the current state (not the history)

Andrey Markov
(1856-1922)

Policies

Optimal policy when R(s, a, s’) = -0.03
for all non-terminals s

§ For MDPs, we want an optimal policy p*: S → A
§ A policy p gives an action for each state
§ An optimal policy is one that maximizes expected

utility if followed

MDP Search Trees
§ Each MDP state projects an expectimax-like search tree

a

s

s’

s, a
(s,a,s’) called a transition

T(s,a,s’) = P(s’|s,a)

R(s,a,s’)
s,a,s’

s is a state

(s, a) is a
q-state

Utilities of Sequences

Discounting

§ It’s reasonable to maximize the sum of rewards
§ It’s also reasonable to prefer rewards now to rewards later
§ One solution: values of rewards decay exponentially

Worth Now Worth Next Step Worth In Two Steps

Visualizing DiscounYng

§ How to discount?
§ Each time we descend a level, we

multiply in the discount once

§ Why discount?
§ Sooner rewards probably do have

higher utility than later rewards
§ Also helps our algorithms converge

§ Example: discount of 0.5
§ U([1,2,3]) = 1*1 + 0.5*2 + 0.25*3
§ U([1,2,3]) < U([3,2,1])

Solving MDPs

Optimal Quantities

§ The value (utility) of a state s:
V*(s) = expected utility starting in s and

acting optimally

§ The value (utility) of a q-state (s,a):
Q*(s,a) = expected utility starting out

having taken action a from state s and
(thereafter) acting optimally

§ The optimal policy:
p*(s) = optimal action from state s

a

s

s’

s, a

(s,a,s’) is a
transition

s,a,s’

s is a
state

(s, a) is a
q-state

[Demo: gridworld values (L9D1)]

The Bellman Equations

How to be optimal:

Step 1: Take correct first action

Step 2: Keep being optimal

The Bellman Equations

§ Definiion of “opimal uility” via expecimax recurrence
gives a simple one-step lookahead relaionship amongst
opimal uility values

§ These are the Bellman equaions, and they characterize
opimal values in a way we’ll use over and over

a

s

s, a

s,a,s’
s’

Racing Search Tree

§ Problem: States are repeated
§ Idea: Only compute needed

quantities once

§ Problem: Tree goes on forever
§ Idea: Do a depth-limited

computation, but with increasing
depths until change is small

§ Note: deep parts of the tree
eventually don’t matter if γ < 1

Time-Limited Values

§ Key idea: time-limited values

§ Define Vk(s) to be the optimal value of s if the game ends
in k more time steps
§ Equivalently, it’s what a depth-k expectimax would give from s

[Demo – time-limited values (L8D6)]

Value Iteration

Value Iteration

§ Start with V0(s) = 0: no time steps left means an expected reward sum of zero

§ Given vector of Vk(s) values, do one ply of expectimax from each state:

§ Repeat until convergence

§ Complexity of each iteration: O(S2A)

§ Theorem: will converge to unique optimal values
§ Basic idea: approximations get refined towards optimal values
§ Policy may converge long before values do

a

Vk+1(s)

s, a

s,a,s’

Vk(s’)

Convergence

§ How do we know the Vk vectors are going to converge?

§ Case 1: If the tree has maximum depth M, then VM holds
the actual untruncated values

§ Case 2: If the discount is less than 1
§ Sketch: For any state Vk and Vk+1 can be viewed as depth

k+1 expectimax results in nearly identical search trees
§ The difference is that on the bottom layer, Vk+1 has actual

rewards while Vk has zeros
§ That last layer is at best all RMAX

§ It is at worst RMIN

§ But everything is discounted by γk that far out
§ So Vk and Vk+1 are at most γk max|R| different
§ So as k increases, the values converge

Policy Methods

Policy Evaluation

Fixed Policies

§ Expecumax trees max over all acuons to compute the opumal values

§ If we fixed some policy p(s), then the tree would be simpler – only one acuon per state
§ … though the tree’s value would depend on which policy we fixed

a

s

s, a

s,a,s’
s’

p(s)

s

s, p(s)

s, p(s),s’
s’

Do the optimal action Do what p says to do

Utilities for a Fixed Policy

§ Another basic operation: compute the utility of a state s
under a fixed (generally non-optimal) policy

§ Define the utility of a state s, under a fixed policy p:
Vp(s) = expected total discounted rewards starting in s and following p

§ Recursive relation (one-step look-ahead / Bellman equation):

p(s)

s

s, p(s)

s, p(s),s’
s’

Policy Evaluation

§ How do we calculate the V’s for a fixed policy p?

§ Idea 1: Turn recursive Bellman equations into updates
(like value iteration)

§ Efficiency: O(S2) per iteration

§ Idea 2: Without the maxes, the Bellman equations are just a linear system
§ Solve with Matlab (or your favorite linear system solver)

p(s)

s

s, p(s)

s, p(s),s’
s’

Policy Extraction

Computing Actions from Values

§ Let’s imagine we have the optimal values V*(s)

§ How should we act?
§ It’s not obvious!

§ We need to do a mini-expectimax (one step)

§ This is called policy extraction, since it gets the policy implied by the values

Computing Actions from Q-Values

§ Let’s imagine we have the optimal q-values:

§ How should we act?
§ Completely trivial to decide!

§ Important lesson: actions are easier to select from q-values than values!

Policy IteraYon

Problems with Value Iteration

§ Value iteration repeats the Bellman updates:

§ Problem 1: It’s slow – O(S2A) per iteration

§ Problem 2: The “arg max” at each state rarely changes

§ Problem 3: The policy often converges long before the values

a

s

s, a

s,a,s’
s’

[Demo: value itera\on (L9D2)]

Policy Iteration

§ Alternative approach for optimal values:
§ Step 1: Policy evaluation: calculate utilities for some fixed policy (not optimal

utilities!) until convergence
§ Step 2: Policy improvement: update policy using one-step look-ahead with resulting

converged (but not optimal!) utilities as future values
§ Repeat steps until policy converges

§ This is policy iteration
§ It’s still optimal!
§ Can converge (much) faster under some conditions

Policy Iteration (PI)

§ Evaluation: For fixed current policy p, find values with policy evaluation:
§ Iterate until values converge:

§ Improvement: For fixed values, get a better policy using policy extraction
§ One-step look-ahead:

Convergence of PI

§ 1. Improvement: Does each policy improvement step produce a better policy?

§ 2. Convergence: Does PI converge to an optimal policy?

Comparison

§ Both value iterauon and policy iterauon compute the same thing (all opumal values)

§ In value iterauon:
§ Every iteraMon updates both the values and (implicitly) the policy
§ We don’t track the policy, but taking the max over acMons implicitly recomputes it

§ In policy iterauon:
§ We do several passes that update uMliMes with fixed policy (each pass is fast because we

consider only one acMon, not all of them)
§ AOer the policy is evaluated, a new policy is chosen (slow like a value iteraMon pass)
§ The new policy will be bePer (or we’re done)

§ Both are dynamic programs for solving MDPs

Reinforcement Learning

Slide credits: ai.berkeley.edu

STA303: Artificial Intelligence

Fang Kong

https://fangkongx.github.io/

https://fangkongx.github.io/

Reinforcement Learning

§ Still assume a Markov decision process (MDP):
§ A set of states s Î S
§ A set of actions (per state) A(s)
§ A transition model T(s,a,s’)
§ A reward function R(s,a,s’)

§ Still looking for a policy p(s)

§ New twist: don’t know T or R
§ I.e. we don’t know which states are good or what the actions do
§ Must explore new states and actions to discover how the world works

Approaches to reinforcement learning

1. Model-based: Learn the model, solve it, execute the solution
2. Learn values from experiences, use to make decisions

a. Direct evaluation
b. Temporal difference learning
c. Q-learning

3. Optimize the policy directly

Model-Based RL

Model-Based Learning

§ Model-Based Idea:
§ Learn an approximate model based on experiences
§ Solve for values as if the learned model were correct

§ Step 1: Learn empirical MDP model
§ Count outcomes s’ for each s, a
§ Directly estimate each entry in T(s,a,s’) from counts
§ Discover each R(s,a,s’) when we experience the transition

§ Step 2: Solve the learned MDP
§ Use, e.g., value or policy iteration, as before

Example: Model-Based Learning

Input Policy p

Assume: g = 1

Observed Episodes (Training) Learned Model

A

B C D

E

B, east, C, -1
C, east, D, -1
D, exit, x, +10

B, east, C, -1
C, east, D, -1
D, exit, x, +10

E, north, C, -1
C, east, A, -1
A, exit, x, -10

Episode 1 Episode 2

Episode 3 Episode 4
E, north, C, -1
C, east, D, -1
D, exit, x, +10

T(s,a,s’).
T(B, east, C) = 1.00
P(C, east, D) = 0.75
P(C, east, A) = 0.25

…

T(s,a,s’)

R(s,a,s’)
R(B, east, C) = -1
R(C, east, D) = -1
R(D, exit, x) = +10

…

Pros and cons

§ Pro:
§ Makes efficient use of experiences (low sample complexity)

§ Con:
§ May not scale to large state spaces

§ Solving MDP is intractable for very large |S|

§ RL feedback loop tends to magnify small model errors
§ Much harder when the environment is partially observable

Basic idea of model-free methods

§ To approximate expectations with respect to a distribution, you
can either
§ Estimate the distribution from samples, compute an expectation
§ Or, bypass the distribution and estimate the expectation from samples

directly

Example: Expected Age
Goal: Compute expected age of STA303 students

“Model Based”: estimate P(A): “Model Free”: estimate expectation

Without P(A), instead collect samples [a1, a2, … aN]

P^(A=a) = Na/N

E[A] » åa P ̂(a) × a

Why does this
work? Because
samples appear
with the right
frequencies.

Why does this
work? Because
eventually you
learn the right

model.

Known P(A)

E[A] = åa P(a) × a = 0.35 x 20 + …

E[A] » 1/N åi ai

Passive Reinforcement Learning

§ Simplified task: policy evaluation
§ Input: a fixed policy p(s)
§ You don’t know T and R
§ Goal: learn the state values Vp(s)

Direct evaluaYon

§ Goal: Estimate Vp(s), i.e., expected total discounted
reward from s onwards

§ Idea:
§ Use returns, the actual sums of discounted rewards from s
§ Average over multiple trials and visits to s

§ This is called direct evaluation (or direct utility
estimation)

Example: Direct Estimation

Input Policy p

Assume: g = 1

Observed Episodes (Training) Output Values

A

B C D

E

B, east, C, -1
C, east, D, -1
D, exit, x, +10

B, east, C, -1
C, east, D, -1
D, exit, x, +10

E, north, C, -1
C, east, A, -1
A, exit, x, -10

Episode 1 Episode 2

Episode 3 Episode 4
E, north, C, -1
C, east, D, -1
D, exit, x, +10

A

B C D

E

+8 +4 +10

-10

-2

Problems with Direct Estimation

§ What’s good about direct estimation?
§ It’s easy to understand
§ It doesn’t require any knowledge of T and R
§ It converges to the right answer in the limit

§ What’s bad about it?
§ Each state must be learned separately (fixable)
§ It ignores information about state connections
§ So, it takes a long time to learn

Output Values

A

B C D

E

+8 +4 +10

-10

-2

If B and E both go to C
under this policy, how can
their values be different?

E.g., B=at home, study hard
E=at library, study hard

C=know material, go to exam

Temporal Difference Learning

§ Big idea: learn from every experience!
§ Update V(s) each time we experience a transition (s, a, s’, r)
§ Likely outcomes s’ will contribute updates more often

§ Temporal difference learning of values
§ Policy still fixed, still doing evaluation!
§ Move values toward value of whatever successor occurs: running average

p(s)
s

s, p(s)

s’

Sample of V(s):

Update to V(s):

Same update:

Running averages contd.

§ What if we use a weighted average with a fixed weight?
§ µn = (1-a)µn-1 + a xn

§ n=1 µ1 = x1

§ n=2 µ2 = (1-a) × µ1 + ax2 = (1-a) × x1 + ax2

§ n=3 µ3 = (1-a) × µ2 + ax3 = (1-a)2 × x1 + a(1-a)x2 + ax3

§ n=4 µ4 = (1-a) × µ3 + ax4 = (1-a)3 × x1 + a(1-a)2x2 + a(1-a)x3 + ax4

§ I.e., exponential forgetting of old values
§ µn is unbiased

TD as approximate Bellman update

§ Idea 3: Update values by maintaining a running average
§ sample = R(s,p(s),s’) + γVp (s’)
§ Vp(s) ¬ (1-a) × Vp(s) + a × sample
§ Vp(s) ¬ Vp(s) + a × [sample - Vp(s)]
§ This is the temporal difference learning rule
§ [sample - Vp(s)] is the “TD error”
§ a is the learning rate

§ Observe a sample, move Vp(s) a little bit to make it more
consistent with its neighbor Vp (s’)

Example: TD Value Estimation

Input Policy p

Assume: g = 1

Observed Episodes (Training) Output Values

A

B C D

E

B, east, C, -1
C, east, D, -1
D, exit, x, +10

B, east, C, -1
C, east, D, -1
D, exit, x, +10

E, north, C, -1
C, east, A, -1
A, exit, x, -10

Episode 1 Episode 2

Episode 3 Episode 4
E, north, C, -1
C, east, D, -1
D, exit, x, +10

A

B C D

E

Example: TD Value Estimation

§ Experience transition i: (𝑠𝑖, 𝑎! , 𝑠!" , 𝑟𝑖).
§ Compute sampled value “target”: 𝑟! + 𝛾𝑉#(𝑠!").
§ Compute “TD error”: 𝛿! = 𝑟! + 𝛾𝑉# 𝑠!" − 𝑉# 𝑠! .
§ Update: 𝑉# 𝑠! += 𝛼! ⋅ 𝛿!.

i s a s' r 𝒓 + 𝛾𝑉! 𝒔" 𝑉! 𝒔 𝛿

1 B east C -1 -1 + 0 0 -1
2 C east D -1 -1 + 0 0 -1
3 D exit --- 10 10 + 0 0 +10
4 B east C -1 -1 + -1 -1 -1
5 C east D -1 -1 + 10 -1 +10
6 D exit --- 10 10 + 0 10 0
7 E north C -1 -1 + 9 0 +8

B, east, C, -1
C, east, D, -1
D, exit, x, +10

B, east, C, -1
C, east, D, -1
D, exit, x, +10

E, north, C, -1
C, east, A, -1
A, exit, x, -10

E, north, C, -1
C, east, D, -1
D, exit, x, +10

s V(s)
A 0
B -2
C 9
D 10
E 8

Problems with TD Value Learning

§ Model-free policy evaluation! 🎉
§ Bellman updates with running sample mean! 🎉

§ Need the transition model to improve the policy! 😱

s

s, a1 s, a2s, a0

Q-learning as approximate Q-iteration

§ Recall the definition of Q values:
§ Q*(s,a) = expected return from doing a in s and then behaving optimally

thereafter; and p*(s) = maxaQ*(s,a)

§ Bellman equation for Q values:
§ Q*(s,a) = ås’ T(s,a,s’)[R(s,a,s’) + γ maxa’ Q*(s’,a’)]

§ Approximate Bellman update for Q values:
§ Q(s,a) ¬ (1-a) × Q(s,a) + a × [R(s,a,s’) + γmaxa’Q (s’,a’)]

§ We obtain a policy from learned Q(s,a), with no model!
§ (No free lunch: Q(s,a) table is |A| times bigger than V(s) table)

Q-Learning

§ Learn Q(s,a) values as you go
§ Receive a sample (s,a,s’,r)
§ Consider your old estimate: Q(s,a)
§ Consider your new sample estimate:

sample = R(s,a,s’) + γ maxa’ Q(s’,a’)

§ Incorporate the new estimate into a running average:
Q(s,a) ¬ (1-a) Q(s,a) + a × [sample]

[Demo: Q-learning – gridworld (L10D2)]
[Demo: Q-learning – crawler (L10D3)]

Q-Learning Properties

§ Amazing result: Q-learning converges to optimal policy -- even
if samples are generated from a suboptimal policy!

§ This is called off-policy learning

§ Caveats:
§ You have to explore enough
§ You have to eventually make the learning rate

small enough
§ … but not decrease it too quickly
§ Basically, in the limit, it doesn’t matter how you select actions (!)

Exploration vs. Exploitation

Exploration vs. Exploitation

§ Exploration: try new things
§ Exploitation: do what’s best given what you’ve learned so far
§ Key point: pure exploitation often gets stuck in a rut and never

finds an optimal policy!

135

Exploration method 1: e-greedy

§ e-greedy exploration
§ Every time step, flip a biased coin
§ With (small) probability e, act randomly
§ With (large) probability 1-e, act on current policy

§ Properties of e-greedy exploration
§ Every s,a pair is tried infinitely often
§ Does a lot of stupid things

§ Jumping off a cliff lots of times to make sure it hurts
§ Keeps doing stupid things for ever

§ Decay e towards 0

Method 2: Optimistic Exploration Functions

§ Exploration functions implement this tradeoff
§ Takes a value estimate u and a visit count n, and

returns an optimistic utility, e.g., f(u,n) = u + k/Ön

§ Regular Q-update:
§ Q(s,a) ¬ (1-a) × Q(s,a) + a × [R(s,a,s’) + γ maxaQ (s’,a)]

§ Modified Q-update:
§ Q(s,a) ¬ (1-a) × Q(s,a) + a × [R(s,a,s’) + γ maxa f(Q (s’,a’),n(s’,a’))]

§ Note: this propagates the “bonus” back to states that lead to
unknown states as well!

Approximate Q-Learning

Generalizing Across States

§ Basic Q-Learning keeps a table of all Q-values

§ In realistic situations, we cannot possibly learn
about every single state!
§ Too many states to visit them all in training
§ Too many states to hold the Q-tables in memory

§ Instead, we want to generalize:
§ Learn about some small number of training states from

experience
§ Generalize that experience to new, similar situations
§ Can we apply some machine learning tools to do this?

[demo – RL pacman]

Feature-Based Representations
§ Solution: describe a state using a vector of

features
§ Features are functions from states to real

numbers (often 0/1) that capture important
properties of the state

§ Example features:
§ Distance to closest ghost fGST
§ Distance to closest dot
§ Number of ghosts
§ 1 / (distance to closest dot) fDOT
§ Is Pacman in a tunnel? (0/1)
§ …… etc.

§ Can also describe a q-state (s, a) with features
(e.g., action moves closer to food)

Linear Value Functions

§ We can express V and Q (approximately) as weighted linear
functions of feature values:
§ 𝑉)(s) = 𝜃1f1(s) + 𝜃2f2(s) + … + 𝜃nfn(s)
§ 𝑄)(s,a) = 𝜃1f1(s,a) + 𝜃2f2(s,a) + … + 𝜃nfn(s,a)

§ Advantage: our experience is summed up in a few powerful numbers
§ Can compress a value function for chess (1043 states) down to about 30 weights!

§ Disadvantage: states may share features but have very different expected utility!

SGD for Linear Value Functions

§ Goal: Find parameter vector 𝜃 that minimizes the mean squared
error between the true and approximate value function

§ Stochastic gradient descent:

Supervised Learning for Value Function Approximation

§ Let denote the true target value function
§ Use supervised learning on "training data" to predict the value

function:

§ For each data sample

𝑓

Temporal-Difference (TD) Learning Objective

§ In TD learning, is a data sample for the
target

§ Apply supervised learning on "training data":

§ For each data sample, update

𝑓

𝑓

Q-Value Function Approximation

§ Approximate the action-value function:

§ Objective: Minimize the mean squared error:

§ Stochastic Gradient Descent on a single sample

Intuitive interpretation

§ Original Q-learning rule tries to reduce prediction error at s,a:
§ Q(s,a) ¬ Q(s,a) + a × [R(s,a,s’) + γ maxa’ Q (s’,a’) - Q(s,a)]

§ Instead, we update the weights to try to reduce the error at s,a:
§ wi ¬ wi + a × [R(s,a,s’) + γ maxa’ Q (s’,a’) - Q(s,a)] ¶Qw(s,a)/¶wi

= wi + a × [R(s,a,s’) + γ maxa’ Q (s’,a’) - Q(s,a)] fi(s,a)
§ Intuitive interpretation:

§ Adjust weights of active features
§ If something bad happens, blame the features we saw; decrease value of

states with those features. If something good happens, increase value!

Policy Search

Policy Search

§ Problem: often the feature-based policies that work well (win games, maximize
utilities) aren’t the ones that approximate V / Q best
§ E.g. your value functions were probably horrible estimates of future rewards, but they still produced

good decisions
§ Q-learning’s priority: get Q-values close (modeling)
§ Action selection priority: get ordering of Q-values right (prediction)

§ Solution: learn policies that maximize rewards, not the values that predict them

§ Policy search: start with an ok solution (e.g. Q-learning) then fine-tune by hill climbing
(or gradient ascent!) on feature weights

Parameterized Policy

§ A policy can be parameterized as

§ The policy can be deterministic:
§ Or stochastic:

§ θ represents the parameters of the policy

Policy Gradient

§ Simplest version:
§ Start with initial policy 𝜋(𝑠) that assigns probability to each action
§ Sample actions according to policy 𝜋
§ Update policy:

§ If an episode led to high utility, make sampled actions more likely
§ If an episode led to low utility, make sampled actions less likely

STA303: Artificial Intelligence

Fang Kong

https://fangkongx.github.io/

Machine Learning Basics

Part of slide credits: ai.berkeley.edu; Stanford CS229; https://www.geeksforgeeks.org/

https://fangkongx.github.io/

Types of Machine Learning

§ Supervised learning
§ Use labeled data to predict on unseen points

§ Unsupervised learning
§ No labeled data

§ Reinforcement learning
§ Sequentially collect data and learn from feedback

Supervised Learning

§ Trained on a “Labelled Dataset”
§ Labelled datasets have both input and output parameters

Tasks in Supervised Learning

Unsupervised Learning

§ Discover patterns and relationships using unlabeled data
§ Without labeled target outputs

Tasks in Unsupervised Learning

Grouping data points into
clusters based on their
similarity

Reduce the dimensionality of
data while preserving its
essential information

Find the relationships
between variables in the
large database

Reinforcement Learning

• Interact with the environment by producing actions and receiving
feedback

• Q-learning
• Deep Q-learning
• PPO

Environment

Agent

Action: a
State: s

Reward: r

Machine Learning Workflow

§ 1. Gather and organize data
§ Preprocessing, cleaning, visualizing

§ 2. Choose a model
§ 3. Train and test your model, or iterate back to step 2 or 1
§ 4. Deploy your model

K-Nearest Neighbors (KNN)

§ Nearest neighbors sensitive to noise or mis-labeled data
§ Smooth by having k nearest neighbors vote

§ Voting over k nearest neighbors: classification
§ (Weighted) average over k nearest neighbors: regression

[Pic by Olga Veksler]

Step 3: Training and Testing

How to select a model?

§ To solve a problem, which model should we choose?
§ KNN or logistic regression?
§ For KNN, which parameter k?

§ Denote as all the models to choose

Select the one with the minimum training loss?

§ Given the training set 𝑆

§ What’s the problem?
§ Lower training error prefers complex models
§ These models usually overfits

Solution: Hold-out cross validation
§ How do we check that we’re not overfitting during training?
§ Split training data into 3 different sets:

§ Training set
§ Validation set
§ Test set

§ Experimentation cycle
§ Learn parameters on training set
§ Evaluate models on validation set
§ Very important: never “peek” at the test set!

Training
Data

Validation
Data

Test
Data

Hold-out cross validation (cont’d)

§ The final model is only trained on 70% of the training set
§ Especially in the case with small training set

§ Waste about 30% of the data

Improvement: k-fold cross validation

§

§ Given a set of records containing positive and negative results, the
computer is going to classify the records to be positive or negative

§ Positive: The computer classifies the result to be positive
§ Negative: The computer classifies the result to be negative
§ True: What the computer classifies is true
§ False: What the computer classifies is false

Evaluation: Confusion matrix

§ Accuracy = !"#!$
!"#!$#%"#%$

= &'#()
&'#()#&#'

Accuracy

§ Accuracy = !"#!$
!"#!$#%"#%$

= &'#()
&'#()#&#'

§ Limitation
§ Suppose number of class 0 examples = 9990
§ Number of class 1 examples = 10
§ The model predicts every example as 0
§ Then the accuracy is 9990/10000=99.9%
§ The accuracy is misleading because the model does not detect any

example in class 1

Accuracy

§ Precision = !$
!$#%$

= ()
()#'

§ Recall = !$
!$#%"

= ()
()#&

§ F-measure = 2∗Precision∗Recall
Precision+Recall

Other metrics

How to understand?

§ A school is running a machine learning primary diabetes scanon
all of its students
§ Diabetic (+) / Healthy (-)
§ False positive is just a false alarm
§ False negative

§ Prediction is healthy but is diabetic
§ Worst case among all 4 cases

§ Accuracy
§ Accuracy = (TP+TN)/(TP+FP+FN+TN)
§ How many students did we correctly label out of all the students?

How to understand?

§ A school is running a machine learning primary diabetes scanon
all of its students
§ Diabetic (+) / Healthy (-)
§ False positive is just a false alarm
§ False negative

§ Prediction is healthy but is diabetic
§ Worst case among all 4 cases

§ Precision
§ Precision = TP/(TP+FP)
§ How many of those who we labeled as diabetic are actually diabetic?

How to understand?

§ A school is running a machine learning primary diabetes scanon all
of its students
§ Diabetic (+) / Healthy (-)
§ False positive is just a false alarm
§ False negative

§ Prediction is healthy but is diabetic
§ Worst case among all 4 cases

§ Recall (sensitivity)
§ Recall = TP/(TP+FN)
§ Of all the people who are diabetic, how many of those we correctly predict?

F1 score (F-Score / F-Measure)

§ F1 Score = 2*(Recall * Precision) / (Recall + Precision)

§ F1 Score=*
+

((1/Recall + 1/Precision)),*

§ Harmonic mean (average) of the precision and recall
§ F1 Score is best if there is some sort of balance between

precision (p) & recall (r) in the system.
§ Oppositely F1 Score isn’t so high if one measure is improved at

the expense of the other.
§ For example, if P is 1 & R is 0, F1 score is 0.

Which to choose?

§ Accuracy
§ A great measure
§ But only when you have symmetric datasets

§ Precision
§ Want to be more confident of your TP
§ E.g. spam emails. We’d rather have some spam emails in inbox rather

than some regular emails in your spam box.

Which to choose?

§ Recall
§ If FP is far better than FN or if the occurrence of FN is

unaccepted/intolerable
§ Would like more extra FP (false alarms) over saving some FN
§ E.g. diabetes. We’d rather get some healthy people labeled diabetic

over leaving a diabetic person labeled healthy

§ F1 score
§ If the costs of FP and FN are both important

Deep Learning

Part of slide credit: ai.berkeley.edu; SJTU VE445

STA303: Artificial Intelligence

Fang Kong

https://fangkongx.github.io/

https://fangkongx.github.io/

Single-layer perception by Rosenblatt [1958]

Slide credit: Weinan Zhang

𝜎 𝜎

Limitation of perception

§ Minsky and Papert [1969]
showed that some rather
elementary computations,
such as XOR problem, could
not be done by Rosenblatt’s
one-layer perceptron

§ However Rosenblatt believed
the limitations could be
overcome if more layers of
units to be added, but no
learning algorithm known to
obtain the weights yet

Solution: Add hidden layers

§ Adding hidden layers to learn more general scenarios

Slide credit: Weinan Zhang

Non-linear activation functions

§ Adding non-linearity allows the network to learn and represent
complex patterns in the data

§ Common non-linear activation functions

[source: MIT 6.S191 introtodeeplearning.com]

𝜎

𝜎 𝜎 𝜎

𝜎

𝜎 𝜎

𝜎

𝜎

2-Layer, 2-Neuron Neural Network

x1

x2

x3
S

w12

w22

w32
>0?

S
w11

w21

w31

>0?

S
w1

w2

y

2-Layer, 2-Neuron Neural Network

x1

x2

x3
S

w12

>0?

S
w11

w21

w31

>0?

S
w1

w2

y

intermediate output h1

w22

w32

𝜎

2-Layer, 2-Neuron Neural Network

x1

x2

x3
S

w12

w22

w32
>0?

S
w11

w21

w31

>0?

S
w1

w2

y

intermediate output h1

intermediate output h2

𝜎

2-Layer, 2-Neuron Neural Network

x1

x2

x3
S

w12

w22

w32
>0?

S
w11

w21

w31

>0?

S
w1

w2

y

intermediate output h1

intermediate output h2

𝜎

2-Layer, 2-Neuron Neural Network

x1

x2

x3
S

w12

w22

w32
>0?

S
w11

w21

w31

>0?

S
w1

w2

y

intermediate output h1

intermediate output h2

𝜎
𝜎 𝜎𝜎

Vectorization

The same equation, formatted with matrices:

The same equation, formatted more compactly by introducing variables representing each matrix:

𝜎 𝜎

𝜎 𝜎

𝜎

𝜎

𝜎
𝜎 𝜎𝜎

2-Layer, 2-Neuron Neural Network

Shape (1, 3).
Input feature vector.

Shape (3, 2).
Weights to be learned.

Shape (1, 2).
Outputs of layer 1,
inputs to layer 2.

Shape (1, 2).
Outputs of layer 1,

inputs to layer 2.

Shape (2, 1).
Weights to be learned.

Shape (1, 1).
Output of network.

𝜎

𝜎

Multi-Layer Neural Network

§ Input to a layer: some dim(x)-dimensional input vector
§ Output of a layer: some dim(y)-dimensional output vector

§ dim(y) is the number of neurons in the layer (1 output per neuron)

§ Process of converting input to output:
§ Multiply the (1, dim(x)) input vector with a (dim(x), dim(y)) weight vector.

The result has shape (1, dim(y)).
§ Apply some non-linear function (e.g. sigmoid) to the result.

The result still has shape (1, dim(y)).

§ Big idea: Chain layers together
§ The input could come from a previous layer’s output
§ The output could be used as the input to the next layer

Deep Neural Network

…

x1

x2

x3

xL

… … … …

z(1)1

z(1)2

z(1)3

z(1)
K(1) z(n)

K(n)z(2)
K(2)

z(2)1

z(2)2

z(2)3 z(n)3

z(n)2

z(n)1

z(OUT)
1

z(OUT)
2

z(OUT)
3

z(n�1)
3

z(n�1)
2

z(n�1)
1

z(n�1)
K(n�1)

…

z(k)i = g(
X

j

W (k�1,k)
i,j z(k�1)

j) 𝝈 = nonlinear activation function𝜎

Universal approximation theorem

§ Theorem (Universal Function Approximators). A two-layer neural
network with a sufficient number of neurons can approximate
any continuous function to any desired accuracy.

Hornik, Kurt, Maxwell Stinchcombe, and Halbert White. "Multilayer feedforward networks are universal approximators."
Neural networks 2.5 (1989): 359-366

Training: Backpropagation

191

Training Neural Networks

§ Step 1: For each input in the training (sub)set x, predict a classification y
using the current weights

§ Step 2: Compare predictions with the true y values, using a loss function
§ Higher value of loss function = bad model
§ Lower value of loss function = good model
§ Example: zero-one loss: count the number of misclassified inputs
§ Example: log loss (derived from maximum likelihood)
§ Example: sum of squared errors (more on this soon)

§ Step 3: Use numerical method (e.g. gradient descent) to minimize loss
§ Loss is a function of the weights. Optimization goal: find weights that minimize loss

𝜎 𝜎

Optimization Procedure: Gradient Descent

§ init

§ for iter = 1, 2, …

w

§ : learning rate --- tweaking parameter that needs to be
chosen carefully
↵

Loss

Computing Gradients

n How do we compute gradients of these loss functions?
n Repeated application of the chain rule:

If

Then

à Derivatives can be computed by following well-defined procedures

f(x) = g(h(x))

f 0(x) = g0(h(x))h0(x)

Feed forward vs. Backpropagation

Make a prediction

Backpropagation

2

Backpropagation (cont.)

STA303: Artificial Intelligence

Generalization

Fang Kong

https://fangkongx.github.io/

Part of slide credit: Stanford CS229

https://fangkongx.github.io/

Intuition

§ Recall in previous classes
§ We typically learn a model ℎ) by minimizing the training loss/error

§ 𝐽) =
*
+
∑!,*+ ℎ) 𝑥 ! − 𝑦 ! -

§ This is not the ultimate goal

§ The ultimate goal
§ Sample a test data from the test distribution 𝒟
§ Measure the model’s error on the test data (test loss/error)

§ Can be approximated by the average error on many sampled test examples

Challenges

§ The test examples are unseen
§ Even though the training set is sampled from the same distribution 𝒟, it can not

guaranteed that the test error is close to the training error
§ Minimizing training error may not lead to a small test error

§ Important concepts
§ Overfitting: the model predicts accurately on the training dataset but doesn’t

generalize well to other test examples
§ Underfitting: the training error is relatively large (typically the test error is also

relatively large)

§ How the test error is influenced by the learning procedure,
especially the choice of model parameterizations?

How about fitting a linear model? (cont’d)

§ Fundamental bottleneck: linear model family’s inability to capture the
structure in the data

§ Define model bias: the test error even if we were to fit it to a very (say,
infinitely) large training dataset

How about a 5th-degree polynomial? (cont’d)

§ Failure: fitting patterns in the data that happened to be present in the
small, finite training set (NOT the real relationship between x and y)

§ Define variance: the amount of variations across models learnt on multiple
different training datasets (drawn from the same underlying distribution)

Bias-variance trade-off

A mathematical decomposition (for regression)

205

Problem setting: regression

§

§

§

Decomposition

§

§ Define ℎ!"# 𝑥 = 𝔼$[(ℎ$(𝑥))]
§ The model obtained by drawing an infinite number of datasets, training

on them, and averaging their predictions on x

§

Sample complexity bounds

208

Useful lemmas

§

§

Problem setting

§ To simplify, consider the classification problem with 𝑦 ∈ {0,1}
§ Training set 𝑆 = { 𝑥% , 𝑦% ; 𝑖 = 1,2, … , 𝑛}, drawn iid from 𝒟

§ For hypothesis ℎ, define training error (empirical risk/error)

§ Define the generalization error

One of PAC assumption: training
and testing set are from the same D

§ Consider the linear classification ℎ& 𝑥 = 1{𝜃'𝑥 ≥ 0}
§ Objective: minimize the training error

§ In learning theory, it will be useful to abstract away from the
specific parameterization of hypotheses

§ Define the hypothesis class ℋ, for linear classification

Problem setting (cont’d)

empirical risk
minimization

Problem setting (cont’d)

§ ERM becomes finding

§ For simplicity, first consider the finite hypothesis set

§ Now, show the guarantee for the generalization error of <ℎ
§ 1. ∀ℎ, ̂𝜀(ℎ) is a reliable estimate of 𝜀 ℎ
§ 2. 0ℎ guarantees good generalization error

Guarantee for a fixed hypothesis function

§ Fix any hypothesis function ℎ% ∈ ℋ
§ Define 𝑍(= 1 ℎ% 𝑥(≠ 𝑦(

§ The training error is

§ The empirical mean of 𝑛 random variables with expectation
§ Applying Hoeffding inequality,

Guarantee for any hypothesis function

§

§ Thus

Corollaries

§ How large must 𝑛 be before we can guarantee that with
probability at least 1 − 𝛿, training error will be within 𝛾 of
generalization error? (sample complexity)

§ What is the distance between the training error and
generalization error with training set size 𝑛 and confidence 𝛿?

Guarantee for the output hypothesis function

§ Recall

§ Define the best hypothesis is

§ Then

§ If uniform convergence occurs, then the generalization error of ℎ
is at most 2𝛾 worse than the best possible hypothesis in ℋ!

Theorem of generalization error

§

§ Explanation of bias/variance
§ If we switch to a larger function class ℋ′ ⊇ ℋ
§ The first term decreases: lower bias
§ The second term increases as 𝑘 increases: higher variance

Corollary of sample complexity

§

Extension to infinite ℋ: Intuition

§ Usually the hypothesis set is infinite
§ For example, the linear function set contains a infinite number of

parameters

§ Suppose ℋ is parameterized by 𝑑 real numbers
§ The computer uses 64 bits to represent a floating point number
§ ℋ contains 2)*+ different hypotheses
§ Existing results show that with fixed 𝛾, 𝛿

VC dimension

§ Shatter

§ VC dimension

VC dimension: illustration

§ Can the set ℋ of linear classifiers in two dimensions shatter the
set below?

§ For any labeling, ℋ can correctly classify

VC dimension: illustration (cont’d)

§ In order to prove that VC(ℋ) is at least D, we need to show only
that there’s at least one set of size D that H can shatter (not
every set of size D)

Convergence results

§

§

Usually the VC
dimension is roughly
linear in the number of
parameters

Deep Reinforcement Learning

Part of slide credits: Weinan Zhang

STA303: Artificial Intelligence

Fang Kong

https://fangkongx.github.io/

https://fangkongx.github.io/

Outline

§ Deep RL – Value methods
§ Deep RL – Policy methods

Value methods: DQN

§ Deep Q-Network (DQN)
§ Uses a deep neural network to approximate Q(s,a)

§ → Replaces the Q-table with a parameterized function for scalability

§ The network takes state s as input, outputs Q-values for all actions a simultaneously

Volodymyr Mnih, Koray Kavukcuoglu, David Silver et al. Playing Atari with Deep Reinforcement Learning. NIPS 2013 workshop.

DQN (cont.)

§ Intuition: Use a deep neural network to approximate Q(s,a)
§ Instability arises in the learning process

§ Samples {(s%, 𝑎%, 𝑠%&', 𝑟%)} are collected sequentially and do not satisfy the i.i.d.
assumption

§ Frequent updates of Q(s,a) cause instability

§ Solutions: Experience replay
§ Store transitions 𝑒. = s. , 𝑎. , 𝑠./*, 𝑟. in a replay buffer D

Sample uniformly from D to reduce sample correlation
• Dual network architecture: Use an evaluation network and a target

network for improved stability

“Human-Level Control Through Deep Reinforcement Learning”, Mnih, Kavukcuoglu, Silver et al. (2015)

Target network

§ Target network 𝑄)!(𝑠, 𝑎)
• Maintains a copy of the Q-network with older parameters 𝜃(

• Parameters 𝜃(are updated periodically (every C steps) to match the evaluation
network

§ Loss Function (at iteration 𝑖)

“Human-Level Control Through Deep Reinforcement Learning”, Mnih, Kavukcuoglu, Silver et al. (2015)

DQN training procedure

§ Collect transitions using an ε-greedy exploration policy
§ Store {(s. , 𝑎. , 𝑠./*, 𝑟.)} into the replay buffer

§ Sample a minibatch of 𝑘 transitions from the buffer
§ Update networks:

§ Compute the target using the sampled transitions
§ Update the evaluation network Q)
§ Every C steps, synchronize the target network 𝑄)! with the evaluation

network

“Human-Level Control Through Deep Reinforcement Learning”, Mnih, Kavukcuoglu, Silver et al. (2015)

Overestimation in Q-Learning

§ Q-function overestimation
§ The target value is computed as:
§ The max operator leads to increasingly larger Q-values, potentially

exceeding the true value

§ Cause of overestimation

§ The chosen action might be overestimated due to Q-function error

Degree of overestimation in DQN

§ Overestimation increases with the number of candidate actions

§ A separately trained Q’-function is used as a reference

Double DQN

§ Uses two separate networks for action selection and value
estimation, respectively.

“Double Reinforcement Learning with Double Q-Learning”, van Hasselt et al. (2016)

Dueling DQN

§ Assume the action-value function follows a distribution:

§ Then:

§ How do we describe 𝜀(𝑠, 𝑎)?

§ This term is also known as the Advantage function

“Dueling Network Architectures for Deep Reinforcement Learning”, Wang et al. (2016)

Dueling DQN (cont.)

§ Advantage function

§ Different forms of advantage aggregation

Deep RL – Policy-based methods

235

Review: The policy gradient theorem

§ The policy gradient theorem generalizes the derivation of
likelihood ratios to the multi-step MDP setting.

§ It replaces the immediate reward 𝑟, with the expected long-term
return 𝑄-(𝑠, 𝑎).

Policy network gradient

§ For stochastic policies, the probability of selecting an action is
typically modeled using a softmax function:

§ 𝑓)(𝑠, 𝑎) is a score function (e.g., logits) for the state-action pair
§ Parameterized by 𝜃, often realized via a neural network

§ Gradient of the log-form

Policy network gradient (cont.)

§ Gradient of the log-form

§ Gradient of the policy network

Back propagation Back propagation

1. Rollout
2. Train another

network

Comparison: DQN v.s. Policy gradient

§ Q-Learning:
§ Learns a Q-value function 𝑄)(𝑠, 𝑎) parameterized by θ
§ Objective: Minimize the TD error

Comparison: DQN v.s. Policy gradient

§ Q-Learning:
§ Learns a Q-value function 𝑄#(𝑠, 𝑎) parameterized by θ
§ Objective: Minimize the TD error

§ Policy gradient
§ Learns a policy 𝜋)(𝑎 ∣ 𝑠) directly, parameterized by θ
§ Objective: Maximize the expected return directly

Limitations of policy gradient methods

§ Learning rate (step size) selection is challenging in policy gradient
algorithms
§ Since the data distribution changes as the policy updates, a previously

good learning rate may become ineffective.
§ A poor choice of step size can significantly degrade performance:

§ Too large → policy diverges or collapses
§ Too small → slow convergence or stagnation

Trust Region Policy Optimization (TRPO)

§ Two forms of the optimization objective
§ Form 1: Trajectory-based objective
§ Form 2: State-value-based objective

Optimization gap of the objective function

§ New policy 𝜃’ and old policy 𝜃

Sampling
inconvenience

Definition of J(𝜃’)

Initial distribution is
independent of 𝜃

Importance sampling

Importance sampling𝑝"#, approximation

TRPO Policy Constraint

§ Use KL divergence to constrain policy update magnitude:

Proximal Policy Optimization (PPO)

§ Clipped Surrogate Objective

Construct the lower bound:

Equivalent at r=1:

Introduction to Multi-armed Bandits

STA303: Artificial Intelligence

Fang Kong

https://fangkongx.github.io/

https://fangkongx.github.io/

Multi-armed bandits (MAB)

• A player and 𝐾 arms
• Each arm 𝑎6 has an unknown reward distribution 𝑃6 with unknown

mean 𝜇6

• In each round 𝑡 = 1,2, … :
• The agent selects an arm 𝐴% ∈ {1,2, … , 𝐾}
• Observes reward 𝑋%∼𝑃,!

Assume 𝑃$ is supported on [0,1]
248

𝜇% 𝜇& 𝜇'……

Items, products, movies, companies, …

CTR, preference value, …

Click information, satisfaction, …

Objective
• Maximize the expected cumulative reward in 𝑇 rounds

𝔼 K
.,*

7
𝑋. = 𝔼 K

.,*

7
𝜇8"

• Minimize the regret in 𝑇 rounds
• Denote 𝑗∗ ∈ argmax1 𝜇1 as the best arm

𝑅𝑒𝑔 𝑇 = 𝑇 C 𝜇1∗ − 𝔼 F
%2'

3
𝜇,!

249

Explore-then-commit (ETC) [Garivier et al., 2016]

• There are 𝐾 = 2 arms (choices/plans/...)
• Suppose
• 𝜇' > 𝜇4
• ∆ = 𝜇' − 𝜇4

• Explore-then-commit (ETC) algorithm
• Select each arm ℎ times
• Find the empirically best arm A
• Choose 𝐴% = 𝐴 for all remaining rounds

ℎ rounds
for 𝑎%

ℎ rounds
for 𝑎&

𝑇 − 2ℎ rounds
for the better

performed one

250

A/B testing

• For each round 𝑡
• 𝜀. ∈ (0,1)
• With probability 𝜀., exploration (uniformly random select arms)
• With probability 1 − 𝜀., exploitation (select the best performed arm

so far)

•When 𝜀, = min 1, .
,/#

, 𝑅𝑒𝑔 𝑇 = 𝑂 012 3
∆

A soft version: 𝜀-greedy

251
Demo: https://cse442-17f.github.io/LinUCB/

https://cse442-17f.github.io/LinUCB/

Upper confidence bound (UCB) [Auer et al., 2002]

• With high probability ≥ 1 − 𝛿

𝜇1 ∈ 𝜇̂1 −
log 1/𝛿
𝑇1

, 𝜇̂1 +
log 1/𝛿
𝑇1

• Optimism: Believe arms have higher rewards, encourage exploration
• The UCB value represents the reward estimates

• For each round 𝑡, select the arm

𝐴 𝑡 ∈ argmax6∈ : W𝜇6 +
log 1/𝛿
𝑇6(𝑡)

252Exploitation Exploration

By Hoeffding’s inequality

Number of selections of 𝑎$

Upper confidence bound (UCB)

Sample mean

